

An Introduction to Matlab for Econometrics

John C. Frain

TEP Working Paper No. 0110

February 2010

Trinity Economics Papers
 Department of Economics
 Trinity College Dublin

An Introduction to MATLAB for Econometrics

John C. Frain. ∗

February 2010

Abstract

This paper is an introduction to MATLAB for econometrics. It describes the

MATLAB Desktop, contains a sample MATLAB session showing elementary MAT-

LAB operations, gives details of data input/output, decision and loop structures,

elementary plots, describes the LeSage econometrics toolbox and maximum likeli-

hood using the LeSage toolbox. Various worked examples of the use of MATLAB

in econometrics are also given. After reading this document the reader should be

able to make better use of the MATLAB on-line help and manuals.

Contents

1 Introduction 4

1.1 Preliminaries . 4

1.2 The MATLAB Desktop . 6

1.2.1 The Command Window . 6

1.2.2 The Command History Window 7

1.2.3 The Start Button . 8

1.2.4 The Edit Debug window . 8

1.2.5 The Figure Windows . 9

1.2.6 The Workspace Browser . 9

1.2.7 The Help Browser . 9

1.2.8 The Path Browser . 10

1.2.9 Miscellaneous Commands . 11

∗Comments are welcome. My email address is frainj at tcd.ie

1

2 Vectors, Matrices and Arrays 11

2.1 A Sample MATLAB session . 11

2.1.1 Entering Matrices . 11

2.1.2 Basic Matrix operations . 12

2.1.3 Kronecker Product . 14

2.1.4 Examples of number formats . 15

2.1.5 fprintf function . 16

2.1.6 element by element operations . 16

2.1.7 miscellaneous functions . 17

2.1.8 sequences . 22

2.1.9 Creating Special Matrices . 22

2.1.10 Random number generators . 23

2.1.11 Extracting parts of a matrix, Joining matrices together to get a

new larger matrix . 24

2.1.12 Using sub-matrices on left hand side of assignment 25

2.1.13 Stacking Matrices . 26

2.1.14 Special Values . 26

2.2 Examples . 26

2.3 Regression Example . 28

2.4 Simulation – Sample Size and OLS Estimates 31

2.5 Example – Macroeconomic Simulation with Matlab 34

3 Data input/output 39

3.1 Native MatLab data files . 39

3.2 Importing from Excel . 40

3.3 Reading from text files . 40

3.4 Exporting data to EXCEL, STATA and other programs 41

3.5 Stat/Transfer . 41

3.6 Formatted Output . 41

3.7 Producing material for inclusion in a paper 42

4 Decision and Loop Structures. 43

5 Elementary Plots 46

2

6 Systems of Regresssion Equations 47

6.1 Using Matlab to estimate systems of regression equations 47

6.2 Exercise – Using Matlab to estimate a simultaneous equation systems . . 59

7 User written functions in MATLAB 59

8 The LeSage Econometric Toolbox 61

9 Maximum Likelihood Estimation using Numerical Techniques 82

10 Octave, Scilab and R 86

10.1 Octave . 86

10.2 Scilab . 87

10.3 R . 87

A Functions etc. in LeSage Econometrics Toolbox 89

A.1 Regression . 89

A.1.1 Programs . 89

A.1.2 Demonstrations . 90

A.1.3 Support functions . 91

A.2 Utilities . 92

A.2.1 Utility Function Library . 92

A.2.2 demonstration programs . 94

A.3 Graphing Function Library . 94

A.3.1 graphing programs . 94

A.3.2 Demonstration Programs . 94

A.3.3 Support Functions . 94

A.4 Regression Diagnostics Library . 95

A.4.1 regression diagnostic programs . 95

A.4.2 Demonstration Programs . 95

A.4.3 support functions . 95

A.5 vector autoregressive function library . 96

A.5.1 VAR/BVAR functions . 96

A.5.2 Demonstration Programs . 96

A.5.3 Demonstration Programs - continued 97

A.5.4 Support Functions . 97

3

A.6 Co-integration Library . 98

A.6.1 Co-integration testing routines . 98

A.6.2 Demonstration Programs . 98

A.6.3 Support functions . 98

A.7 Gibbs sampling convergence diagnostics functions 99

A.7.1 Convergence testing functions . 99

A.7.2 Demonstration Programs . 99

A.7.3 Support Functions . 99

A.8 Distribution functions library . 100

A.8.1 pdf, cdf, inverse functions . 100

A.8.2 Random Samples . 101

A.8.3 Demonstration and Test programs 102

A.8.4 Support Functions . 102

A.9 Optimization functions library . 102

A.9.1 Optimization Functions . 102

A.9.2 Demonstration Programs . 103

A.9.3 Support Functions . 103

A.10 Spatial Econometrics . 103

A.10.1 Functions . 103

A.10.2 Demonstration Programs . 104

A.10.3 Support Functions . 105

1 Introduction

1.1 Preliminaries

These notes are a guide for students of econometrics who wish to learn MATLAB in MS

Windows. I define the functions of MATLAB using simple examples. To get the best

benefit from these notes you should read them sitting in front of a computer entering

the various MATLAB instructions as you read the notes. The material in the first three

sections is elementary and will be required by all economists starting with MATLAB.

The remaining sections contain some more advanced material and should be read as

required.

In these notes I have used a mono-spaced font for MATLAB instructions and for com-

puter input and output. Descriptive material, explanations and commentary on the

computer input/output is given in the current font.

4

While the first aim of these notes is to get the reader started in the use of MATLAB

for econometrics it should be pointed out that MATLAB has many uses in economics.

In recent years it has been used widely in what has become known as computational

economics. This area has applications in macroeconomics, determination of optimal

policies and in finance. Recent references include Kendrick et al. (2006), Marimon and

Scott (1999), Miranda and Fackler (2002) and Ljungqvist and Sargent (2004).

I do not know of any book on MATLAB written specifically for economics. Creel (2008)

is a set of lecture notes on econometrics which can be downloaded from the web. This

contains examples of quantitative econometric analysis using GNU Octave which has

a syntax similar to Matlab (see section 10.1). LeSage (1999) is a free econometrics

toolbox available for download from http://www.spatial-econometrics.com/. This

site also contains links to several other MATLAB resources useful in econometrics. A

free ARCH/GARCH toolbox is available at http://http://www.kevinsheppard.com/

wiki/MFE_Toolbox. MathWorks, the composers of MATLAB have a list of books using

MATLAB for Economics/Finance (see www.mathworks.com). They have also issued a

new econometrics toolbox (see http://www.mathworks.com/products/econometrics/).

The MathWorks overview of this toolbox indicates that is is targeted at econometric time

series in finance. For advanced applications in applied probability Paolella (2006, 2007)

are comprehensive accounts of computational aspects of probability theory using MAT-

LAB. Higham and Higham (2005) is a good book on MATLAB intended for all users of

MATLAB. Pratap (2006) is a good general “getting started” book. There are also many

excellent books covering MATLAB for Engineers and/or Scientists which you might find

useful if you need to use MATLAB in greater depth.

These notes can not give a comprehensive account of MATLAB. Your copy of MATLAB

comes with one of the best on-line help systems available. Full versions of the manuals

are available in portable document format on the web at http:/www.mathworks.com.

MATLAB started life, in the late 70’s, as a computer program for handling matrix

operations. Over the years it has been extended and the basic version of MATLAB

now contains more than 1000 functions. Various “toolboxes” have also been written

to add specialist functions to MATLAB. Anyone can extend MATLAB by adding their

own functions and/or toolboxes. Any glance at an econometrics textbook shows that

econometrics involves much matrix manipulation and MATLAB provides an excellent

platform for implementing the various textbook procedures and other state of the art

estimators. Before you use MATLAB to implement procedures from your textbook you

must understand the matrix manipulations that are involved in the procedure. When

you implement them you will understand the procedure better. Using a black box

package may, in some cases, be easier but how often do you know exactly what the black

box is producing. Using MATLAB for econometrics may appear to involve a lot of extra

work but many students have found that it helps their understanding of both matrix

theory and econometrics.

In MATLAB as it all other packages it makes life much easier if you organise your work

5

properly. The procedure That I use is some variation of the following –

1. Set up a new directory for each project (e.g. s:\Matlab\project1)

2. Set up a shortcut for each project. The shortcut should specify that the program

start in the data directory for the project. If all your work is on the same PC the

shortcut is best stored on the desktop. If you are working on a PC in a computer

lab you will not be able to use the desktop properly and the shortcut may be

stored in the directory that you have set up for the project. If you have several

projects in hand you should set up separate shortcuts and directories for each of

them. Each shortcut should be renamed so that you can associate it with the

relevant project.

3. Before starting MATLAB you are strongly advised to amend the options in Win-

dows explorer so that full filenames (including any file extensions allocated to

programs) appear in Windows Explorer and any other Windows file access menus.

1.2 The MATLAB Desktop

The MATLAB desktop has the following parts -

1. The Command Window

2. The Command History Window

3. The Start Button

4. The Documents Window (including the Editor/(Debugger) and Array Editor

5. The Figure Windows

6. The Workspace Browser

7. The Help Browser

8. The Path Browser

1.2.1 The Command Window

The simplest use of the command window is as a calculator. With a little practice it

may be as easy, if not easier, to use than a spreadsheet. Most calculations are entered

almost exactly as one would write them.

>> 2+2

ans = 4

>> 3*2

ans = 6

6

The object ans contains the result of the last calculation of this kind. You may also

create an object a which can hold the result of your calculation.

>> a=3^3

a = 27

>> a

a = 27

>> b=4^2+1

b = 17

>> b=4^2+1;

% continuation lines

>> 3+3 ...

+3

ans = 9

Type each instruction in the command window, press enter and watch the answer. Note

• The arithmetic symbols +, -, *, / and ^ have their usual meanings

• The assignment operator =

• the MATLAB command prompt >>

• A ; at the end of a command does not produce output but the assignment is made

or the command is completed

• If a statement will not fit on one line and you wish to continue it to a second type

an ellipsis (. . .) at the end of the line to be continued.

Individual instructions can be gathered together in an m-file and may be run together

from that file (or script). An example of a simple m-file is given in the description of the

Edit Debug window below. You may extend MATLAB by composing new MATLAB

instructions using existing instructions gathered together in a script file.

You may use the up down arrow keys to recall previous commands (from the current or

earlier sessions) to the Command Window. You may the edit the recalled command be-

fore running it. Further access to previous commands is available through the command

window.

1.2.2 The Command History Window

If you now look at the Command History Window you will see that as each command was

entered it was copied to the Command History Window. This contains all commands

7

previously issued unless they are specifically deleted. To execute any command in the

command history double click it with the left mouse button. To delete a commands

from the history select them, right click the selection and select delete from the drop

down menu.

1.2.3 The Start Button

This allows one to access various MATLAB functions and works in a manner similar to

the Start button in Windows

1.2.4 The Edit Debug window

Clearly MATLAB would not be of much use if one was required, every time you used

MATLAB, to enter your commands one by one in the Command Window. You can save

your commands in an m-file and run the entire set of commands in the file. MATLAB

also has facilities for changing the commands in the file, for deleting command or adding

new commands to the file before running them. Set up and run the simple example

below. We shall be using more elaborate examples later

The Edit Window may be used to setup and edit M-files. Use File|New|m-file to open

a new m-file. Enter the following in the file \vol_sphere.m

% vol_sphere.m

% John C Frain revised 12 November 2006

% This is a comment line

% This M-file calculates the volume of a sphere

echo off

r=2

volume = (4/3) * pi * r^3;

string=[’The volume of a sphere of radius ’ ...

num2str(r) ’ is ’ num2str(volume)];

disp(string)

% change the value of r and run again

Now Use File|Save As vol sphere.m. (This will be saved in your default directory if

you have set up things properly check that this is working properly).

Now return to the Command Window and enter vol sphere. If you have followed the

instructions properly MATLAB will process this as if it were a MATLAB instruction.

The edit window is a programming text editor with various features colour coded. Com-

ments are in green, variables and numbers in black, incomplete character strings in red

and language key-words in blue. This colour coding helps to identify errors in a program.

The Edit window also provides debug features for use in finding errors and verifying

programs. Additional features are available in the help files.

8

1.2.5 The Figure Windows

This is used to display graphics generated in MATLAB. Details will be given later when

we are dealing with graphics.

1.2.6 The Workspace Browser

This is an option in the upper left hand window. Ensure that it is open by selecting

the workspace tab. Compare this with the material in the command window. Note that

it contains a list of the variables already defined. Double clicking on an item in the

workspace browser allows one to give it a new value.

The contents of the workspace can also be listed by the whos command

1.2.7 The Help Browser

The Help Browser can be started by selecting the [?] icon from the desktop toolbar

or by typing helpdesk or helpwin in the Command Window. You should look at the

Overview and the Getting Help entries. There are also several demos which provide

answers to many questions.

MATLAB also has various built-in demos. To run these type demo at the command

prompt or select demos from the start button

The on-line documentation for MatLab is very good. The MatLab www site (http:

/www.mathworks.com gives access to various MatLab manuals in pdf format. These

may be downloaded and printed if required. (Note that some of these documents are

very large and in many cases the on-line help is more accessible and is clearer.

One can also type help at a command prompt to get a list of help topics in the Command

Window. Then type help topic and details will be displayed in the command window.

If, for example, you wish to find a help file for the inverse of a matrix the command

help inverse will not help as there is no function called inverse. In such a case one

may enter lookfor inverse and the response will be

INVHILB Inverse Hilbert matrix.

IPERMUTE Inverse permute array dimensions.

ACOS Inverse cosine, result in radians.

ACOSD Inverse cosine, result in degrees.

ACOSH Inverse hyperbolic cosine.

ACOT Inverse cotangent, result in radian.

ACOTD Inverse cotangent, result in degrees.

ACOTH Inverse hyperbolic cotangent.

ACSC Inverse cosecant, result in radian.

ACSCD Inverse cosecant, result in degrees.

9

ACSCH Inverse hyperbolic cosecant.

ASEC Inverse secant, result in radians.

ASECD Inverse secant, result in degrees.

ASECH Inverse hyperbolic secant.

ASIN Inverse sine, result in radians.

ASIND Inverse sine, result in degrees.

ASINH Inverse hyperbolic sine.

ATAN Inverse tangent, result in radians.

ATAN2 Four quadrant inverse tangent.

ATAND Inverse tangent, result in degrees.

ATANH Inverse hyperbolic tangent.

ERFCINV Inverse complementary error function.

ERFINV Inverse error function.

INV Matrix inverse.

PINV Pseudoinverse.

IFFT Inverse discrete Fourier transform.

IFFT2 Two-dimensional inverse discrete Fourier transform.

IFFTN N-dimensional inverse discrete Fourier transform.

IFFTSHIFT Inverse FFT shift.

inverter.m: %% Inverses of Matrices

etc.

From this list one can see that the required function is inv. Syntax may then be got

from help inv.

1.2.8 The Path Browser

MatLab comes with a large number of M-files in various directories.

1. When MatLab encounters a name it looks first to see if it is a variable name.

2. It then searches for the name as an M-file in the current directory. (This is one of

the reasons to ensure that the program starts in the current directory.

3. It then searches for an M-file in the directories in the search path.

If one of your variables has the same name as an M-file or a MatLab instruction you

will not be able to access that M-file or MatLab instruction. This is a common cause of

problems.

The MatLab search path can be added to or changed at any stage by selecting Desktop

Tools|Path from the Start Button. Path related functions include

addpath Adds a directory to the MatLab search path

10

path Display MatLab search path

parh2rc Adds the current path to the MatLab search path

rmpath Remove directory from MatLab search path

The command cd changes the current working directory

1.2.9 Miscellaneous Commands

Note the following MatLab commands

clc Clears the contents of the Command Window

clf - Clears the contents of the Figure Window

If MATLAB appears to be caught in a loop and is taking too long to finish a command

it may be aborted by ^C (Hold down the Ctrl key and press C). MATLAB will

then return to the command prompt

diary filename After this command all input and most output is echoed to the

specified file. The commands diary off and diary on will suspend and resume

input to the diary (log) file.

2 Vectors, Matrices and Arrays

The basic variable in MatLab is an Array. (The numbers entered earlier can be regarded

as (1 × 1) arrays, Column vectors as (n × 1) arrays and matrices as (n × m) arrays.

MATLAB can also work with multidimensional arrays.

2.1 A Sample MATLAB session

It is recommended that you work through the following sitting at a PC with MATLAB

running and enter the commands in the Command window. Most of the calculations

involved are simple and they can be checked with a little mental arithmetic.

2.1.1 Entering Matrices

>> x=[1 2 3 4] % assigning values to a (1 by 4) matrix (row vector)

x =

1 2 3 4

>> x=[1; 2; 3; 0] % A (4 by 1) (row) vector

x =

1

11

2

3

4

>> x=[1,2,3;4,5,6] % (2 by 3) matrix

x =

1 2 3

4 5 6

>> x=[] %Empty array

x = []

%*****************************

2.1.2 Basic Matrix operations

. The following examples are simple. Check the various operations and make sure that

you understand them. This will also help you revise some matrix algebra which you will

need for your theory.

>> x=[1 2;3 4]

x =

1 2

3 4

>> y=[3 7;5 4]

y =

3 7

5 4

>> x+y %addition of two matrices - same dimensions

ans =

4 9

8 8

>> y-x %matrix subtraction

ans =

2 5

2 0

>> x*y % matrix multiplication

ans =

13 15

29 37

12

Note that when matrices are multiplied their dimensions must conform. The number

of columns in the first matrix must equal the number of rows in the second otherwise

MatLab returns an error. Try the following example. When adding matrices a similar

error will be reported if the dimensions do not match

>> x=[1 2;3 4]

x =

1 2

3 4

>> z=[1,2]

z =

1 2

>> x*z

??? Error using ==> mtimes

Inner matrix dimensions must agree.

>> inv(x) % find inverse of a matrix

ans =

-2.00000 1.00000

1.50000 -0.50000

>> x*inv(x) % verify inverse

ans =

1.00000 0.00000

0.00000 1.00000

>> y*inv(x) % multiply y by the inverse of x

ans =

4.50000 -0.50000

-4.00000 3.00000

>> y/x % alternative expression

ans =

4.50000 -0.50000

-4.00000 3.00000

>> inv(x)*y pre-multiply y by the inverse of x

ans =

13

1.0e+01 *

-0.10000 -1.00000

0.20000 0.85000

>> x\y % alternative expression - different algorithm - better for regression

ans =

1.0e+01 *

-0.10000 -1.00000

0.20000 0.85000

2.1.3 Kronecker Product

A⊗B =













a11B a12B . . . a1mB

a21B a22B . . . a2mB

...
...

...

an1B an2B . . . anmB













x>> x=[1 2;3 4]

x =

1 2

3 4

>> I=eye(2,2)

I =

1 0

0 1

>> kron(x,I)

ans =

1 0 2 0

0 1 0 2

3 0 4 0

0 3 0 4

>> kron(I,x)

ans =

14

1 2 0 0

3 4 0 0

0 0 1 2

0 0 3 4

2.1.4 Examples of number formats

>> x=12.345678901234567;

>> format loose %includes blank lines to space output

>> x

x =

12.3457

>> format compact %Suppress blank lines

>> x

x =

12.3457

>> format long %14 digits after decimal

>> x

x =

12.34567890123457

>> format short e % exponential or scientific format

>> x

x =

1.2346e+001

>> format long e

>> x

x =

1.234567890123457e+001

>> format short g % decimal or exponential

>> x

x =

12.346

>> format long g

>> x

x =

12.3456789012346

>> format bank % currency format (2 decimals)

>> x

15

x =

12.35

2.1.5 fprintf function

>> fprintf(’%6.2f\n’, x)

12.35

>> fprintf(’%6.3f\n’, x)

12.346

>> fprintf(’The number is %6.4f\n’, x)

The number is 12.3457

Here fprintf prints to the command window according to the format specification

’%6.4f\n’. In this format specification the % indicates the start of a format specification.

There will be at least 6 digits displayed of which 4 will be decimals in floating point (f).

The \n indicates that the curser will then move to the next line. For more details see

page 41.

2.1.6 element by element operations

% .operations

>> x=[1 2;3 4];

>> y=[3 7;5 4]

>> x .* y %element by element multiplication

ans =

3 14

15 16

>> y ./ x %element by element division

ans =

3.00000 3.50000

1.66667 1.00000

>> z=[3 7;0 4];

>> x./z

Warning: Divide by zero.

ans =

0.3333 0.2857

Inf 1.0000

%mixed scalar matrix operations

16

>> a=2;

>> x+a

ans =

3 4

5 6

>> x-a

ans =

-1 0

1 2

>> x*2

ans =

2 4

6 8

>> x/2

ans =

0.50000 1.00000

1.50000 2.00000

%exponents

% x^a is x^2 or x*x i.e.

>> x^a

ans =

7 10

15 22h

% element by element exponent

>> z = [1 2;2 1]

>> x .^ z

ans =

1 4

9 4

2.1.7 miscellaneous functions

Some functions. Operate element by element

>> exp(x)

17

ans =

1.0e+01 *

0.27183 0.73891

2.00855 5.45982

>> log(x)

ans =

0.00000 0.69315

1.09861 1.38629

>> sqrt(x)

ans =

1.00000 1.41421

1.73205 2.00000

Using negative numbers in the argument of logs and square-roots produces an error

in many other packages. MATLAB returns complex numbers. Take care!! This is

mathematically correct but may not be what you want.

>> z=[1 -2]

z =

1 -2

>> log(z)

ans =

0 0.6931 + 3.1416i

>> sqrt(z)

ans =

1.0000 0 + 1.4142i

>> x-[1 2;3 4]

ans =

0 0

0 0

>> % determinant

>> det(x)

ans =

-2

>> %trace

>> trace(x)

ans =

18

5

The function diag(X) where X is a square matrix puts the diagonal of X in a matrix.

The function diag(Z) where Z is a column vector outputs a matrix with diagonal Z

and zeros elsewhere

>> z=diag(x)

z =

1

4

>> u=diag(z)

u =

1 0

0 4

% Rank of a matrix

>> a=[2 4 6 9

3 2 5 4

2 1 7 8]

a =

2 4 6 9

3 2 5 4

2 1 7 8

>> rank(a)

ans =

3

sum(A) returns sums along different dimensions of an array. If A is a vector, sum(A)

returns the sum of the elements. If A is a matrix, sum(A) treats the columns of A as

vectors, returning a row vector of the sums of each column.

>> x=[1 2 3 4]

x =

1 2 3 4

>> sum(x)

ans =

10

>> sum(x’)

ans =

19

10

>> x=[1 2;3 4]

x =

1 2

3 4

>> sum(x)

ans =

4 6

The function reshape(A,m,n) returns the m × n matrix B whose elements are taken

column-wise from A. An error results if A does not have exactly mn elements

>> x=[1 2 3 ; 4 5 6]

x =

1 2 3

4 5 6

>> reshape(x,3,2)

ans =

1 5

4 3

2 6

blkdiag(A,B,C,) constructs a block diagonal matrix from the matrices A, B c etc.

a =

1 2

3 4

>> b=5

b =

5

>> c=[6 7 8;9 10 11;12 13 14]

c =

6 7 8

9 10 11

12 13 14

>> blkdiag(a,b,c)

ans =

1 2 0 0 0 0

3 4 0 0 0 0

0 0 5 0 0 0

0 0 0 6 7 8

0 0 0 9 10 11

0 0 0 12 13 14

20

This is only a small sample of the available functions

eigenvalues and eigenvectors

>> A=[54 45 68

45 50 67

68 67 95]

A =

54 45 68

45 50 67

68 67 95

>> eig(A)

ans =

0.4109

7.1045

191.4846

>> [V,D]=eig(A)

V =

0.3970 0.7631 0.5100

0.5898 -0.6378 0.4953

-0.7032 -0.1042 0.7033

D =

0.4109 0 0

0 7.1045 0

0 0 191.4846

>> Test=A*V

Test =

0.1631 5.4214 97.6503

0.2424 -4.5315 94.8336

-0.2890 -0.7401 134.6750

>> Test ./ V

ans =

0.4109 7.1045 191.4846

0.4109 7.1045 191.4846

0.4109 7.1045 191.4846

>>

21

2.1.8 sequences

colon operator (:) first:increment:last is a sequence with first element first second

element first+ increment and continuing while entry is less than last.

>> [1:2:9]

ans =

1 3 5 7 9

>> [2:2:9]

ans =

2 4 6 8

>> [1:4]

ans =

1 2 3 4

>> [1:4]’

ans =

1

2

3

4

%Transpose of a vector

>> x

x =

1 2

3 4

>> x’

ans =

1 3

2 4

2.1.9 Creating Special Matrices

% creating an Identity Matrix and matrices of ones and zeros

>> x=eye(4)

22

x =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

>> x=ones(4)

x =

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

>> x=ones(4,2)

x =

1 1

1 1

1 1

1 1

>> x=zeros(3)

x =

0 0 0

0 0 0

0 0 0

>> x=zeros(2,3)

x =

0 0 0

0 0 0

>> size(x)

ans =

2 3

2.1.10 Random number generators

There are two random number generators in standard MATLAB.

rand generates uniform random numbers on [0,1)

randn generates random numbers from a normal distribution with zero mean and unit

23

variance.

>> x=rand(5)

x =

0.81551 0.55386 0.78573 0.05959 0.61341

0.58470 0.92263 0.78381 0.80441 0.20930

0.70495 0.89406 0.11670 0.45933 0.05613

0.17658 0.44634 0.64003 0.07634 0.14224

0.98926 0.90159 0.52867 0.93413 0.74421

>> x=rand(5,1)

x =

0.21558

0.62703

0.04805

0.20085

0.67641

>> x=randn(1,5)

x =

1.29029 1.82176 -0.00236 0.50538 -1.41244

2.1.11 Extracting parts of a matrix, Joining matrices together to get a new

larger matrix

>> arr1=[2 4 6 8 10];

>> arr1(3)

ans = 6

>> arr2=[1, 2, -3;4, 5, 6;7, 8, 9]

arr2 =

1 2 -3

4 5 6

7 8 9

>> arr2(2,2)

ans = 5

>> arr2(2,:)

ans =

4 5 6

>> arr2(2,1:2)

24

ans =

4 5

>> arr2(end,2:end)

ans =

8 9

2.1.12 Using sub-matrices on left hand side of assignment

>> arr4=[1 2 3 4;5 6 7 8 ;9 10 11 12]

arr4 =

1 2 3 4

5 6 7 8

9 10 11 12

>> arr4(1:2,[1,4])=[20,21;22 23]

arr4 =

20 2 3 21

22 6 7 23

9 10 11 12

>> arr4=[20,21;22 23]

arr4 =

20 21

22 23

>> arr4(1:2,1:2)=1

arr4 =

1 1

1 1

>> arr4=[1 2 3 4;5 6 7 8 ;9 10 11 12]

arr4 =

1 2 3 4

5 6 7 8

9 10 11 12

>> arr4(1:2,1:2)=1

arr4 =

1 1 3 4

1 1 7 8

9 10 11 12

25

2.1.13 Stacking Matrices

>> x=[1 2;3 4]

x =

1 2

3 4

>> y=[5 6; 7 8]

y =

5 6

7 8

>> z=[x,y,(15:16)’] % join matrices side by side

z =

1 2 5 6 15

3 4 7 8 16

>> z=[x’,y’,(15:16)’]’ % Stack matrices vertically

z =

1 2

3 4

5 6

7 8

15 16

See also the help files for the MatLab commands cat, horzcat and vertcat

2.1.14 Special Values

>> pi

pi = 3.1416

>> exp(1) %

e = 2.7183

>> clock

ans =

1.0e+03 *

2.00500 0.00100 0.01300 0.02200 0.01100 0.01932

YEAR Month Day hours Minutes Seconds

2.2 Examples

Work through the following examples using MATLAB.

26

1. let A =

(

3 0

5 2

)

and B =

(

1 4

4 7

)

Use MATLAB to calculate.

(a) A+B

(b) A−B

(c) AB

(d) AB−1

(e) A/B

(f) A\B
(g) A. ∗B
(h) A./B

(i) A⊗B

(j) B ⊗A

Use pen, paper and arithmetic to verify that your results are correct.

2. Let A =













1 4 3 7

2 6 8 3

1 3 4 5

4 13 15 15













Use the MatLab function to show that the rank of

A is three. Why is it not four?

3. Solve Ax = a for x where A =













1 4 3 7

2 6 8 3

1 3 4 5

2 1 7 6













and a =













14

8

10

18













4. Generate A which is a 4 × 4 matrix of uniform random numbers. Calculate the

trace and determinant of A. Use MATLAB to verify that

(a) The product of the eigenvalues of A is equal to the determinant of A

(b) The sum of the eigenvalues of A is equal to the trace of A. (You might find

the MATLAB functions sum() and prod() helpful - please see the relevant

help files). Do these results hold for an arbitrary matrix A.

5. Let A and B be two 4 × 4 matrices of independent N(0,1) random numbers. If

tr(A) is the trace of A. Show that

(a) tr(A+B) = tr(A)+tr(B)

(b) tr(4A) = 4tr(A)

(c) tr(A′) = tr(A)

(d) tr(BA)=tr(AB)

Which of these results hold for arbitrary matrices? Under what conditions would

they hold for non-square matrices?

27

2.3 Regression Example

In this Example I shall use the instructions you have already learned to simulate a set

of observations from a linear equation and use the simulated observations to estimate

the coefficients in the equation. In the equation yt is related to x2t and x3t according to

the following linear relationship.

yt = β1 + β2x2t + β3x3t + εt, t = 1, 2, . . . , N

or in matrix notation

y = Xβ + ε

where

• x2 is a trend variable which takes the values (1,2, . . . 30)

• x3 is a random variable with uniform distribution on [3, 5]

• εt are independent identically distributed normal random variables with zero mean

and constant variance σ2.

• β1 = 5, β2 = 1 and β3 = 0.1 and εt are iidn(0,.04) (σ2 = 0.04)

1. Verify that the model may be estimated by OLS.

2. Use MatLab to simulate 50 observations of each of x3 and εt and thus of xt.

3. Using the simulated values find OLS estimates of β

4. Estimate the covariance matrix of β and thus the t-statistics for a test that the

coefficients of β are zero.

5. Estimate the standard error or the estimate of y

6. Calculate the F-statistic for the significance of the regression

7. Export the data to STATA and verify your result.

8. In a simulation exercise such as this two different runs will not produce the same

result. Any answers submitted should be concise and short and should contain

9. A copy of the m-file used in the analysis. This should contain comments to explain

what is being done

10. A short document giving the results of one simulation and any comments on the

results. You might also include the regression table from the STATA analysis.

This document should be less than one page in length.

28

A sample answer follows. First the program, then the output and finally some explana-

tory notes

% example1.m

% Regression Example Using Simulated Data

%John C Frain

%19 November 2006

%values for simulation

nsimul=50;

beta=[5,1,.1]’;

%

% Step 1 Prepare and process data for X and y matrices/vectors

%

x1=ones(nsimul,1); %constant

x2=[1:nsimul]’; %trend

x3=rand(nsimul,1)*2 +3; % Uniform(3,5)

X=[x1,x2,x3];

e=randn(nsimul,1)*.2; % N(0,.04)

y= X * beta +e ; %5*x1 + x2 + .1*x3 + e;

%

[nobs,nvar]=size(X);

%

% Estimate Model

Note that I have named my estimated variables ols.betahat, ols.yhat, ols.resid

etc. The use of the ols. in front of the variable name has two uses. First if I want to

do two different estimate I will call the estimates ols1. and ols2. or IV. etc. and I

can easily put the in a summary table. Secondly this structure has a meaning that is

useful in a more advanced use of MATLAB.

ols.betahat=(X’*X)\X’*y % Coefficients

ols.yhat = X * ols.betahat; % beta(1)*x1+beta(2)*x2+beta(3)*x;

ols.resid = y - ols.yhat; % residuals

ols.ssr = ols.resid’*ols.resid; % Sum of Squared Residuals

ols.sigmasq = ols.ssr/(nobs-nvar); % Estimate of variance

ols.covbeta=ols.sigmasq*inv(X’*X); % Covariance of beta

ols.sdbeta=sqrt(diag(ols.covbeta));% st. dev of beta

ols.tbeta = ols.betahat ./ ols.sdbeta; % t-statistics of beta

ym = y - mean(y);

ols.rsqr1 = ols.ssr;

ols.rsqr2 = ym’*ym;

ols.rsqr = 1.0 - ols.rsqr1/ols.rsqr2; % r-squared

ols.rsqr1 = ols.rsqr1/(nobs-nvar);

29

ols.rsqr2 = ols.rsqr2/(nobs-1.0);

if ols.rsqr2 ~= 0;

ols.rbar = 1 - (ols.rsqr1/ols.rsqr2); % rbar-squared

else

ols.rbar = ols.rsqr;

end;

ols.ediff = ols.resid(2:nobs) - ols.resid(1:nobs-1);

ols.dw = (ols.ediff’*ols.ediff)/ols.ssr; % durbin-watson

fprintf(’R-squared = %9.4f \n’,ols.rsqr);

fprintf(’Rbar-squared = %9.4f \n’,ols.rbar);

fprintf(’sigma^2 = %9.4f \n’,ols.sigmasq);

fprintf(’S.E of estimate= %9.4f \n’,sqrt(ols.sigmasq));

fprintf(’Durbin-Watson = %9.4f \n’,ols.dw);

fprintf(’Nobs, Nvars = %6d,%6d \n’,nobs,nvar);

fprintf(’**\n \n’);

% now print coefficient estimates, SE, t-statistics and probabilities

%tout = tdis_prb(tbeta,nobs-nvar); % find t-stat probabilities - no

%tdis_prb in basic MATLAB - requires leSage toolbox

%tmp = [beta sdbeta tbeta tout]; % matrix to be printed

tmp = [ols.betahat ols.sdbeta ols.tbeta]; % matrix to be printed

% column labels for printing results

namestr = ’ Variable’;

bstring = ’ Coef.’;

sdstring= ’Std. Err.’;

tstring = ’ t-stat.’;

cnames = strvcat(namestr,bstring,sdstring, tstring);

vname = [’Constant’,’Trend’ ’Variable2’];

The fprintf is used to produce formatted output. See subsection 3.6

fprintf(’%12s %12s %12s %12s \n’,namestr, ...

bstring,sdstring,tstring)

fprintf(’%12s %12.6f %12.6f %12.6f \n’,...

’ Const’,...

ols.betahat(1),ols.sdbeta(1),ols.tbeta(1))

fprintf(’%12s %12.6f %12.6f %12.6f \n’,...

’ Trend’,...

ols.betahat(2),ols.sdbeta(2),ols.tbeta(2))

fprintf(’%12s %12.6f %12.6f %12.6f \n’,...

’ Var2’,...

ols.betahat(3),ols.sdbeta(3),ols.tbeta(3))

The output of this program should look like

30

R-squared = 0.9998

Rbar-squared = 0.9998

sigma^2 = 0.0404

S.E of estimate= 0.2010

Durbin-Watson = 1.4445

Nobs, Nvars = 50, 3

**

Variable Coef. Std. Err. t-stat.

Const 4.804620 0.229091 20.972540

Trend 0.996838 0.002070 481.655756

Var2 0.147958 0.052228 2.832955

>>

Your answers will of course be different

Explanatory Notes

Most of your MATLAB scripts or programs will consist of three parts

1. Get and Process data Read in your data and prepare vectors or matrices of

your left hand side (y), Right hand side (X) and Instrumental Variables (Z)

2. Estimation Some form of calculation(s) like β̂ = (X′X−1)X′y implemented by

a MATLAB instruction like

betahat = (X’*X)\X*y

(where X and y have been set up in the previous step) and estimate of required

variances, covariances, standard errors etc.

3. Report Output tables and Graphs in a form suitable for inclusion in a report.

4. Run the program with a smaller number of replications (say 25) and see how the

t-statistic on y3 falls. Rerun it with a larger number of replications and see how it

rises. Experiment to find how many observations are required to get a significant

coefficient for y3 often. Suggest a use of this kind of analysis.

2.4 Simulation – Sample Size and OLS Estimates

This exercise is a study of the effect of sample size on the estimates of the coefficient

in an OLS regression. The x values for the regression have been generated as uniform

random numbers on the interval [0,100). The residuals are simulated standardised nor-

mal random variables. The process is repeated for sample sizes of 20, 100 500 and 2500

simulation is repeated 10,000 times.

31

% example2.m

% MATLAB Simulation Example

%John C Frain

%19 November 2006

%

${

The data files x20.csv, x100.csv, x500.csv and x2500.csv

were generated using the code below

$}

%Generate Data

x20 = 100*rand(20,1)

save(’x20.csv’,’x20’,’-ASCII’,’-double’)

x100 = 100*rand(100,1)

save(’x100.csv’,’x100’,’-ASCII’,’-double’)

x500 = 100*rand(500,1)

save(’x500.csv’,’x500’,’-ASCII’,’-double’)

x2500 = 100*rand(200,1)

save(’x2500.csv’,’x2500’,’-ASCII’,’-double’)

%}

clear

nsimul=10000;

BETA20=zeros(nsimul,1); % vector - results of simulations with 20 obs.

x=load(’-ascii’, ’x20.csv’); % load xdata

X=[ones(size(x,1),1),x]; % X matrix note upper case X

beta = [10;2]; % true values of coefficients

%

for ii = 1 : nsimul;

eps = 20.0*randn(size(X,1),1); % simulated error term

y = X * beta + eps; % y values

betahat = (X’*X)\X’*y; % estimate of beta

BETA20(ii,1)=betahat(2);

end

fprintf(’Mean and st. dev of 20 obs simulation %6.3f %6.3f\n’ ...

,mean(BETA20),std(BETA20))

%hist(BETA,100)

BETA100=zeros(nsimul,1);

x=load(’-ascii’, ’x100.csv’); % load xdata

X=[ones(size(x,1),1),x]; % X matrix note upper case X

beta = [10;2]; % true values of coefficients

%

for ii = 1 : nsimul;

32

eps = 20.0*randn(size(X,1),1); % simulated error term

y = X * beta + eps; % y values

betahat = inv(X’*X)*X’*y; % estimate of beta

BETA100(ii,1)=betahat(2);

end

fprintf(’Mean and st. dev of 100 obs simulation %6.3f %6.3f\n’, ...

mean(BETA100),std(BETA100))

BETA500=zeros(nsimul,1);

x=load(’-ascii’, ’x500.csv’); % load xdata

X=[ones(size(x,1),1),x]; % X matrix note upper case X

beta = [10;2]; % true values of coefficients

%

for ii = 1 : nsimul;

eps = 20.0*randn(size(X,1),1); % simulated error term

y = X * beta + eps; % y values

betahat = inv(X’*X)*X’*y; % estimate of beta

BETA500(ii,1)=betahat(2);

end

fprintf(’Mean and st. dev of 500 obs simulation %6.3f %6.3f\n’, ...

mean(BETA500),std(BETA500))

BETA2500=zeros(nsimul,1);

x=load(’-ascii’, ’x2500.csv’); % load xdata note use of lower case x as vector

X=[ones(size(x,1),1),x]; % X matrix note upper case X

beta = [10;2]; % true values of coefficients

%

for ii = 1 : nsimul;

eps = 20.0*randn(size(X,1),1); % simulated error term

y = X * beta + eps; % y values

betahat = inv(X’*X)*X’*y; % estimate of beta

BETA2500(ii,1)=betahat(2);

end

fprintf(’Mean and st. dev of 2500 obs simulation %6.3f %6.3f\n’, ...

mean(BETA2500),std(BETA2500))

n=hist([BETA20,BETA100,BETA500,BETA2500],1.4:0.01:2.6);

plot((1.4:0.01:2.6)’,n/nsimul);

h = legend(’Sample 20’,’Sample 100’,’Sample 500’,’Sample 2500’);

The output of this program will look like this. On your screen the graph will display

coloured lines.

33

Mean and st. dev of 20 obs simulation 2.000 0.165

Mean and st. dev of 100 obs simulation 2.000 0.065

Mean and st. dev of 500 obs simulation 2.000 0.030

Mean and st. dev of 2500 obs simulation 1.999 0.049

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
Sample 20
Sample 100
Sample 500
Sample 2500

2.5 Example – Macroeconomic Simulation with Matlab

Problem

This example is based on the macroeconomic system in Example 10.3 of Shone (2002).

There are 10 equations in this economic model. The equations of the system are as

follows

ct = 110 + 0.75ydt

ydt = yt − taxt

taxt = −80 + 0.2yt

it = −4rt

gt = 330

et = ct + it + gt

yt = et−1

mdt = 20 + 0.25yt − 10rt

mst = 470

mdt = mst

34

While the aim in Shone (2002) is to examine the system algebraically, here we examine

it numerically. Often this may be the only way to solve the system and Matlab is a

suitable tool for this work. The model is too simple to be of any particular use in

macroeconomics but it does allow one to illustrate the facilities offered by Matlab for

this kind of work.

Initialise and Describe Variables

N = 15 ; % Number of periods for simulation

c = NaN * zeros(N,1); %real consumption

tax = NaN * zeros(N,1); %real tax

yd = NaN * zeros(N,1); %real disposible income

i = NaN * zeros(N,1); % real investment

g = NaN * zeros(N,1); % real government expenditure

e = NaN * zeros(N,1); % real expenditure

y = NaN * zeros(N,1); % real income

md = NaN * zeros(N,1); % real money demand

ms = NaN * zeros(N,1); %real money supply

r = NaN * zeros(N,1); % interest rate

Simulate

g and ms are the policy variables.

t=(1:N)’; % time variable

g = 330 * ones(N,1);

ms = 470 * ones(N,1);

y(1) = 2000;

The next step is to simulate the model over the required period. In this case this

is achieved by a simple reordering of the equations and inverting the money demand

equation to give an interest rate equation. In the general case we might need a routine

to solve the set of non linear equations or some routine to maximise a utility function.

Note that the loop stops one short of the full period and then does the calculations for

the final period (excluding the income calculation for the period beyond the end of the

sample under consideration).

for ii = 1:(N-1)

tax(ii) = -80 + 0.2 * y(ii);

yd(ii) = y(ii) - tax(ii);

c(ii) = 110 + 0.75 * yd(ii);

md(ii) = ms(ii);

r(ii) = (20 + 0.25* y(ii) -md(ii))/10; % inverting money demand

35

i(ii) = 320 -4 * r(ii);

e(ii) = c(ii) + i(ii) + g(ii);

y(ii+1) = e(ii);

end

tax(N) = -80 + 0.2 * y(N);

yd(N) = y(N) - tax(N);

c(N) = 110 + 0.75 * yd(N);

md(N) = ms(N);

r(N) = (20 + 0.25* y(N) -md(N))/10;

i(N) = 320 -4 * r(N);

e(N) = c(N) + i(N) + g(N);

Now output results and save y for later use. note that the system is in equilibrium.

Note that in printing we use the transpose of base

base = [t,y,yd,c,g-tax,i,r];

fprintf(’ t y yd c g-tax i r\n’)

fprintf(’%7.0f%7.0f%7.0f%7.0f%7.0f%7.0f%7.0f\n’,base’)

ybase = y;

t y yd c g-tax i r

1 2000 1680 1370 10 300 5

2 2000 1680 1370 10 300 5

3 2000 1680 1370 10 300 5

4 2000 1680 1370 10 300 5

5 2000 1680 1370 10 300 5

6 2000 1680 1370 10 300 5

7 2000 1680 1370 10 300 5

8 2000 1680 1370 10 300 5

9 2000 1680 1370 10 300 5

10 2000 1680 1370 10 300 5

11 2000 1680 1370 10 300 5

12 2000 1680 1370 10 300 5

13 2000 1680 1370 10 300 5

14 2000 1680 1370 10 300 5

15 2000 1680 1370 10 300 5

Revised Simulation

We increase g to 350 and examine the passage to the new equilibrium. Basically we run

the same program with a different starting value for g.

36

N = 15 ; % Number of periods for simulation

c = NaN * zeros(N,1); %real consumption

tax = NaN * zeros(N,1); %real tax

yd = NaN * zeros(N,1); %real disposible income

i = NaN * zeros(N,1); % real investment

g = NaN * zeros(N,1); % real government expenditure

e = NaN * zeros(N,1); % real expenditure

y = NaN * zeros(N,1); % real income

md = NaN * zeros(N,1); % real money demand

ms = NaN * zeros(N,1); %real money supply

r = NaN * zeros(N,1); % interest rate

% Policy Variables

g = 350 * ones(N,1);

ms = 470 * ones(N,1);

t=(1:N)’;

y(1) = 2000;

for ii = 1:(N-1)

tax(ii) = -80 + 0.2 * y(ii);

yd(ii) = y(ii) - tax(ii);

c(ii) = 110 + 0.75 * yd(ii);

md(ii) = ms(ii);

r(ii) = (20 + 0.25* y(ii) -md(ii))/10; % inverting money demand

i(ii) = 320 -4 * r(ii);

e(ii) = c(ii) + i(ii) + g(ii);

y(ii+1) = e(ii);

end

tax(N) = -80 + 0.2 * y(N);

yd(N) = y(N) - tax(N);

c(N) = 110 + 0.75 * yd(N);

md(N) = ms(N);

r(N) = (20 + 0.25* y(N) -md(N))/10;

i(N) = 320 -4 * r(N);

e(N) = c(N) + i(N) + g(N);

policy = [t,y,yd,c,g-tax,i,r];

fprintf(’ t y yd c g-tax i r\n’)

fprintf(’%7.0f%7.0f%7.0f%7.0f%7.0f%7.0f%7.0f\n’,policy’)

ypolicy =y;

37

t y yd c g-tax i r

1 2000 1680 1370 30 300 5

2 2020 1696 1382 26 298 6

3 2030 1704 1388 24 297 6

4 2035 1708 1391 23 297 6

5 2038 1710 1393 23 296 6

6 2039 1711 1393 22 296 6

7 2039 1712 1394 22 296 6

8 2040 1712 1394 22 296 6

9 2040 1712 1394 22 296 6

10 2040 1712 1394 22 296 6

11 2040 1712 1394 22 296 6

12 2040 1712 1394 22 296 6

13 2040 1712 1394 22 296 6

14 2040 1712 1394 22 296 6

15 2040 1712 1394 22 296 6

Now we compare results in a table and a graph. Note that income converges to a new

limit.

fprintf(’ t ybase ypolicy\n’)

fprintf(’%7.0f%7.0f%7.0f\n’,[t,ybase, ypolicy]’)

plot(t,[ybase,ypolicy])

title(’Equilibrium and Shocked Macro-system’)

xlabel(’Period’)

ylabel(’Income’)

axis([1 15 1995 2045])

t ybase ypolicy

1 2000 2000

2 2000 2020

3 2000 2030

4 2000 2035

5 2000 2038

6 2000 2039

7 2000 2039

8 2000 2040

9 2000 2040

10 2000 2040

11 2000 2040

12 2000 2040

13 2000 2040

38

14 2000 2040

15 2000 2040

2 4 6 8 10 12 14
1995

2000

2005

2010

2015

2020

2025

2030

2035

2040

2045
Equilibrium and Shocked Macro−system

Period

In
co

m
e

3 Data input/output

3.1 Native MatLab data files

The instruction Save filename saves the contents of the workspace in the file ’filename.mat’.

save used in the default manner saves the data in a binary format. The instruction

save filename, var1, var2 saves var1 and var2 in the file filename.mat. Similarly

the commands Load filename and load filename, var1, var2. load the contents of

’filename.mat’ or the specified variables from the file into the workspace. In general

.mat files are nor easily readable in most other packages. They are ideal for use within

MATLAB and for exchange between MATLAB users. (note that there may be some

incompatibilities between different versions of MATLAB). These .mat files are binary

and can not be examined in a text editor.

.mat is the default extension for a MATLAB data file. If you use another extension,

say .ext the option Save mat filename.ext should be used with the save and load

commands. It is possible to use save and load to save and load text files but these

instructions are very limited. If your data are in EXCEL or csv format the methods

described below are better

39

3.2 Importing from Excel

The sample file g10xrate.xls contains daily observations on the exchange rates of G10

countries and we wish to analyse them with MATLAB. There are 6237 observations of

each exchange rate in the columns of the EXCEL file. The easiest way to import these

data into MATLAB is to use the File|import data wizard and follow the prompts.

In this case the import wizard did not pick out the series names from the Excel file.

I imported the entire data matrix as a matrix and extracted the individual series in

MATLAB. One can save the data in MATLAB format for future use in MATLAB This

is illustrated in the code below.

USXJPN = data(:,1);

USXFRA = data(:,2);

USXSUI = data(:,3);

USXNLD = data(:,4);

USXUK = data(:,5);

USXBEL = data(:,6);

USXGER = data(:,7);

USXSWE = data(:,8);

USXCAN = data(:,9);

USXITA = data(:,10);

save(’g10xrate’, ’USXJPN’,’USXFRA’,’USXSUI’,’USXNLD’,’USXUK’,’USXBEL’,’USXGER’, ...

’USXSWE’,’USXCAN’,’USXITA’)

Note that I have listed the series to be saved as I did not wish to save the data matrix.

The same effect could have been achieved with the uiimport command.

3.3 Reading from text files

The import wizard can also import many types of text file including the comma separated

files we have used in STATA. The missing data code in Excel csv files is #NA. The version

of MATLAB that i am using has problems reading this missing value code and it should

be changed to NaN (the MATLAB missing value code) before importing csv data. In

this case the import wizard recognised the column names. It is important that you check

that all your data has been imported correctly.

The MATLAB functions textscan or textread can read various text files and allow

a greater degree of flexibility than that available from uiimport. This flexibility is

obtained at a cost of greater complexity. Details are given in the Help files. I would

think that most users will not need this flexibility but it is there if needed.

40

3.4 Exporting data to EXCEL, STATA and other programs

The command xlswrite(’filename’,M) writes the matrix M to the file filename

in the current working directory. If M is n × m the numeric values in the matrix are

written to the first n row and m columns in the first sheet in the spreadsheet. The

command csvwrite(’filename’,M) writes the matrix M to the file filename in the

current working directory. You can use this file to transfer data to STATA. Alternatively

export your Excel file from Excel in csv format.

3.5 Stat/Transfer

Another alternative is to use the Stat/Transfer package which allows the transfer of data

files between a large number of statistical packages.

3.6 Formatted Output

The MATLAB function fprintf()may be used to produce formatted output on screen1.

The following MATLAB program gives an example of the us of the fprintf() function.

Sample MATLAB program demonstrating Formatted Output

clear

degrees_c =10:10:100;

degrees_f = (degrees_c * 9 /5) + 32;

fprintf(’\n\n Conversion from degrees Celsius \n’);

fprintf(’ to degrees Fahrenheit\n\n’);

fprintf(’ Celsius Fahrenheit\n’);

for ii = 1:10;

fprintf(’%12.2f%12.2f\n’,degrees_c(ii),degrees_f(ii));

end

%

fprintf(...

’\n\n%5.2f degrees Celsius is equivalent of %5.3f degrees fahrenheit\n’, ...

degrees_c(1),degrees_f(1))

Output of Sample MATLAB program demonstrating Formatted Output

Conversion from degrees Celsius

1fprintf() is only one of a large number of C-style input/output functions in C. These allow con-

siderable flexibility in sending formatted material to the screen of to a file. The MATLAB help files

give details of the facilities available. If further information is required one might consult a standard

test book on the C programming language

41

to degrees Fahrenheit

Celsius Fahrenheit

10.00 50.00

20.00 68.00

30.00 86.00

40.00 104.00

50.00 122.00

60.00 140.00

70.00 158.00

80.00 176.00

90.00 194.00

100.00 212.00

10.00 degrees Celsius is equivalent of 50.000 degrees fahrenheit

Note the following

• The first argument of the fprintf() function is a kind of format statement in-

cluded within ’ marks.

• The remaining arguments are a list of variables or items to be printed separated

by commas

• Within the format string there is text which is produced exactly as set down.

There are also statements like %m.nf which produces a decimal number which is

allowed m columns of output and has n places of decimals. These are applied in

turn to the items in the list to be printed.

• This f format is used to output floating point numbers there are a considerable

number or other specifiers to output characters, strings, and number in formats

other than floating point.

• If the list to be printed is too long the formats are recycled.

• Not the use of \n which means skip to the next line. This is essential.

3.7 Producing material for inclusion in a paper

A considerable amount of the material in this note was produced from MATLAB m-

files using the —File—Publish to— facilities in the MATLAB m-file editor which

produces output in WORD, Powerpoint, LATEX , HTML etc. for inclusion in papers,

presentations etc. The facilities are described in the help files and may vary from version

to version of Matlab.

42

To Access these facilities you must first turn them on in the Matlab Editor. This is

done by —Cell—Enable Cell Mode— in the editor menu. Cell mode enables you to

divide your m-file into cells or sections. (Do not confuse cell mode in the editor with cell

data structures in Matlab. It is unfortunate that these two different concepts have the

same name) Enabling cell mode adds a new set of buttons to the menu bar and enables

a set of items in the cell menu item. The menu items allow one to

• Disable cell mode

• Evaluate current cell

• Evaluate current cell and advance

• Evaluate entire file

• Insert Cell Divider

• Insert Cell Dividers around Selection

• Insert Cell Markup

– Cell Title

– Descriptive Text

– Bold Text

– Monospaced Text

– Preformatted Text

– Bulleted Text

– TEX Equation

• Next Cell

• Previous Cell

Section 2.5, including its graph, was subject to very minor editing before being added

to this document. I have also used the facility to produce transparencies for lectures on

MATLAB.

4 Decision and Loop Structures.

There are four basic control (Decision or Loop Structures) available in MATLAB

if statements The basic form of the if statement is

if conditions

statements

end

43

The statements are only processed if the conditions are true The conditions can

include the following operators

== equal

∼= not equal

< less than

> greater than

<= less than or equal to

>= greater than or equal to

& logical and

&& logical and (for scalars) short-circuiting

| logical or

|| logical or and (for scalars) short-circuiting

xor logical exclusive or

all true if all elements of vector are nonzero

any true if any element of vector is nonzero

The if statement may be extended

if conditions

statements1

else

statements2

end

in which case statements1 are used if conditions are true and statements2 if false.

This if statement may be extended again

if conditions1

statements1

elseif conditions2

statements2

else

statements3

end

with an obvious meaning (I hope).

for The basic form of the for group is

for variable = expression

statements

end

44

Here expression is probably a vector. statements is processed for each of the

values in expression. The following example shows the use of a loop within a loop

>> for ii = 1:3

for jj=1:3

total=ii+jj;

fprintf(’%d + %d = %d \n’,ii,jj,total)

end

end

1 + 1 = 2

1 + 2 = 3

1 + 3 = 4

2 + 1 = 3

2 + 2 = 4

2 + 3 = 5

3 + 1 = 4

3 + 2 = 5

3 + 3 = 6

while The format of the while statement is

while conditions

statements

end

The while statement has the same basic functionality as the for statement. The

for statement will be used when one knows precisely when and how many times

an operation will be repeated. The statements are repeated so long as conditions

are true

switch An example of the use of the switch statement follows

switch p

case 1

x = 24

case 2

x = 19

case 3

x = 15

otherwise

error(’p must be 1, 2 or 3’)

end

Use matrix statements in preference to loops. Not only are they more efficient but they

are generally easier to use. That said there are occasions where one can not use a matrix

statement.

45

If you wish to fill the elements of a vector or matrix using a loop it is good practice to

initialise the vector or matrix first. For example if you wish to fill a 100 × 20 matrix,

X, using a series of loops one could initialise the matrix using one of the following

commands

X = ones(100,20)

X = zeros(100,20)

X = ones(100,20)*NaN

X = NaN(100,20)

5 Elementary Plots

Simple graphs can be produced easily in MatLab. The following sequence

%values for simulation

nsimul=50;

beta=[5,1,.1]’;

%

x1=ones(nsimul,1); %constant

x2=[1:nsimul]’; %trend

x3=rand(nsimul,1)*2 +3; % Uniform(3,5)

x=[x1,x2,x3];

e=randn(nsimul,1)*.2; % N(0,.04)

y= x * beta +e ; %5*x1 + x2 + .1*x3 + e;

%

[nobs,nvar]=size(x);

betahat=inv(x’*x)*x’*y %g

yhat = x * betahat; % beta(1)*x1-beta(2)*x2-beta(3)*x;

resid = y - yhat;

plot(x2,resid)

title(’Graph Title’)

xlabel(’Time’)

ylabel(’Residual’)

46

0 10 20 30 40 50
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5
Graph Title

Time

R
es

id
ua

l

repeats the earlier OLS simulation, opens a graph window, draws a graph of the residu-

als against the trend in the ols-simulation exercise, puts a title on the graph and labels

the x and y axes. The vectors x2 and resid must have the same dimensions. This graph

was saved in eps format and imported into this document.

6 Systems of Regression Equations

6.1 Using Matlab to estimate systems of regression equations

This section contains two examples of the estimation of systems of equations. The first

is an examination of the classic Grunfeld investment data set. Many textbooks use this

dataset to illustrate various features of system estimation. Green (2000) is the source

of the data used here. Later editions of this book also examine these data but in less

detail.

The MATLAB output also includes corresponding analysis using the le Sage economet-

rics package which is covered in section 8 of this note. As an exercise the user might

extend the analysis to include various Likelihood Ratio tests of the restrictions imposed

by the various estimation procedures.

47

Analysis of Grunfeld Investment data

Introduction

The basic system model that we are looking at here is

yti = Xtiβi + εti

where 1 ≤ i ≤ M represents the individual agent or country or item for which we are

estimating some equation and 1 ≤ t ≤ T represents the tth measurement on the ith unit.

We assume that the variance of εti, σ
2
i is constant for 1 ≤ t ≤ T . Each Xi is T × ki.

We may write these equations

y1 = X1β1 + ε1

y2 = X2β2 + ε2

. . .

yM = XMβM + εM

In this section we will assume that X is exogenous. By imposing various cross-equation

restrictions on the βi and the covariances of the εti we obtain a variety of estimators

(e.g. Pooled OLS, Equation be Equation OLS, SUR).

The variables included in the Grunfeld analysis are

• FIRM : There are 10 firms

• YEAR : Data are from 1935 to 1954 (20 years)

• I : Gross Investment

• F : Value of Firm

• C : Stock of Plant and Equipment

For more details see Green (2000, 2008) or the original references listed there.

• To reduce the amount of detail we shall restrict analysis to 5 firms

• Firm no 1 : GM - General Motors

• Firm no 4 : GE - general electric

• Firm no 3 : CH - Chrysler

• Firm no 8 : WE - Westinghouse

• Firm no 2 : US - US Steel

To start the analysis is use the MATLAB Import data using |File|Import Data]. The

test names on the data set are not imported as I wish to define these myself. This sets

up a matrix containing data. I save data in Matlab form the first time. Later I use

load data; %

to reload the data as below

48

Load and Generate data

load data

Y_GM = data(1:20, 3); % I

X_GM = [ones(20,1),data(1:20,[4 5])]; % constant F C

Y_GE = data(61:80, 3); % I

X_GE = [ones(20,1),data(61:80,[4 5])]; % constant F C

Y_CH = data(41:60, 3); % I

X_CH = [ones(20,1),data(41:60,[4 5])]; % constant F C

Y_WE = data(141:160, 3); % I

X_WE = [ones(20,1),data(141:160,[4 5])]; % constant F C

Y_US = data(21:40, 3); % I

X_US = [ones(20,1),data(21:40,[4 5])]; % constant F C

We now estimate the coefficients imposing various restrictions. Each estimation involves

the following steps

1. Set up the required y and X matrices.

2. Estimate the required coefficients.

3. Estimate standard errors, t-statistics etc.

4. Report.

Pooled OLS

The restrictions imposed by Pooled OLS are that corresponding coefficients are the

same across equations. We also assume that the variance of the disturbances is constant

across equations.2 Thus, in this case ki = k, for all i We can therefore assume that each

observation on each unit is one more observation from the same single equation system.

We may write the system as follows













y1

y2

. . .

yM













=













X1

X2

. . .

XM













β +













ε1

ε2

. . .

εM













(MT × 1) (MT × k) (k × 1) (MT × 1)

or, more compactly, using the obvious notation

y = Xβ + ε

and β may be estimated by β̂ = (X′X)−1X′y etc. This is implemented in MATLAB

as follows –

2We could of course relax this condition and estimate Heteroskedastic Consistent Standard Errors

49

Y = [Y_GM’, Y_GE’, Y_CH’, Y_WE’, Y_US’]’; % leave out ; for testing if

% necessary delete during run or output will be unreadable

X = [X_GM’, X_GE’, X_CH’, X_WE’, X_US’]’;

pols.beta = (X’*X)\X’*Y;

pols.uhat = Y - X*pols.beta ;

pols.sigsq = (pols.uhat’*pols.uhat)/(size(X,1)-size(X,2));%(T-k)

pols.sdbeta = sqrt(diag(inv(X’*X))*pols.sigsq);

pols.tbeta = pols.beta ./ pols.sdbeta;

pols.se = sqrt(pols.sigsq);

label = [’Constant ’; ’F ’; ’C ’];

disp(’OLS Results using stacked matrices’)

disp(’ coef sd t-stat’)

for ii=1:size(X,2)

fprintf(’%s%10.4f%10.4f%10.4f\n’,label(ii,:),pols.beta(ii),pols.sdbeta(ii), pols.tbeta(ii))

end

fprintf(’Estimated Standard Error %10.4f\n\n\n’,pols.se)

OLS Results using stacked matrices

coef sd t-stat

Constant -47.0237 21.6292 -2.1741

F 0.1059 0.0114 9.2497

C 0.3014 0.0437 6.8915

Estimated Standard Error 128.1429

%

% Verification using Lesage package

%

pooled = ols(Y, X);

vnames= [’I ’;

’Constant ’;

’F ’;

’C ’];

prt(pooled,vnames)

\begin{verbatim}

Ordinary Least-squares Estimates

Dependent Variable = I

R-squared = 0.7762

Rbar-squared = 0.7716

sigma^2 = 16420.6075

Durbin-Watson = 0.3533

50

Nobs, Nvars = 100, 3

Variable Coefficient t-statistic t-probability

Constant -47.023691 -2.174080 0.032132

F 0.105885 9.249659 0.000000

C 0.301385 6.891475 0.000000

Equation by equation OLS

This section assumes that the coefficients vary across units. (In panel data estimation

we assume that only the constant terms vary across units). We also assume that there is

no contemporaneous correlation between the disturbances in the system. We may write

the system of equations as













y1

y2

...

yM













=













X1 0 · · · 0

0 X2 · · · 0
...

...
. . .

...

0 0 · · · XM













β +













ε1

ε2
...

εM













or more compactly using the obvious substitutions

y = Xβ + ε

where y and ε are TM × 1, X is TM × kM and β is kM × 1. y, ε, and β are stacked

versions of yi, εi, and βi. The variance of ε is given by

Ω = E [εε′]

=













σ2
1IT 0 · · · 0

0 σ2
2IT · · · 0

...
...

. . .
...

0 0 · · · σ2
MIT













=













σ2
1 0 · · · 0

0 σ2
2 · · · 0

0 0
. . . 0

0 0 · · · σ2
M













⊗ IT

The coding of this example should be relatively clear. Perhaps the most difficult part is

the estimation of the variances. The procedure here is very similar to that used in the

first step of the SUR estimation procedure except that the contemporaneous correlation

is used to improve the estimates. It should be noted that, in this case different variables

are likely to be used in different equations, The only change required is in the calculation

of the X matrix.

51

% Y as before

X=blkdiag(X_GM ,X_GE , X_CH , X_WE , X_US);

eqols.beta = (X’*X)\X’*Y;

eqols.uhat = Y - X*eqols.beta ;

eqols.temp = reshape(eqols.uhat,size(X_GM,1),5); %residuals for

% each firm in a column

eqols.sigsq1 =eqols.temp’*eqols.temp/(size(X_GM,1)-size(X_GM,2));

eqols.sigsq = diag(diag(eqols.sigsq1)); % Remove non-diagonal elements

%eqols.sdbeta = sqrt(diag(inv(X’*X)*X’*kron(eye(size(X_GM,1)),eqols.sigsq)*X*inv(X’*X)));

eqols.covarbeta = inv(X’*X)*kron(eqols.sigsq,eye(3));

eqols.sdbeta = diag(sqrt(eqols.covarbeta));

eqols.tbeta=eqols.beta ./ eqols.sdbeta;

eqols.se=sqrt(diag(eqols.sigsq));

%

% Write results

%

disp(’OLS equation by equation using stacked matrices’)

disp(’OLS estimates GE equation’)

firm = [’GE’;

’GM’;

’CH’;

’wE’;

’US’];

for jj = 1:5 % Loop over firms

fprintf(’\n\n\n’)

disp(’ coef sd t-stat’)

for ii=1:3 %Loop over coefficients

fprintf(’%10s%10.4f%10.4f%10.4f\n’,label(ii), ...

eqols.beta(ii+(jj-1)*3),eqols.sdbeta(ii+(jj-1)*3), ...

eqols.tbeta(ii+(jj-1)*3))

end

fprintf(’Standard Error is %10.4f\n’,eqols.se(jj));

end

OLS equation by equation using stacked matrices

OLS estimates GE equation

coef sd t-stat

C -149.7825 105.8421 -1.4151

F 0.1193 0.0258 4.6172

52

C 0.3714 0.0371 10.0193

Standard Error is 91.7817

coef sd t-stat

C -6.1900 13.5065 -0.4583

F 0.0779 0.0200 3.9026

C 0.3157 0.0288 10.9574

Standard Error is 13.2786

coef sd t-stat

C -9.9563 31.3742 -0.3173

F 0.0266 0.0156 1.7057

C 0.1517 0.0257 5.9015

Standard Error is 27.8827

coef sd t-stat

C -0.5094 8.0153 -0.0636

F 0.0529 0.0157 3.3677

C 0.0924 0.0561 1.6472

Standard Error is 10.2131

coef sd t-stat

C -49.1983 148.0754 -0.3323

F 0.1749 0.0742 2.3566

C 0.3896 0.1424 2.7369

Standard Error is 96.4345

Verify using le Sage Toolbox

olsestim=ols(Y_US,X_US);

prt(olsestim, vnames);

Ordinary Least-squares Estimates

Dependent Variable = I

R-squared = 0.4709

53

Rbar-squared = 0.4086

sigma^2 = 9299.6040

Durbin-Watson = 0.9456

Nobs, Nvars = 20, 3

Variable Coefficient t-statistic t-probability

Constant -49.198322 -0.332252 0.743761

F 0.174856 2.356612 0.030699

C 0.389642 2.736886 0.014049

SUR Estimates

Suppose that we have a random sample of households and we are have time series data

on expenditure on holidays (yit) and relevant explanatory variables. Suppose that we

have sufficient data to estimate a single equation for each person in the sample. We

also assume that there is no autocorrelation in each equation (often a rather heroic

assumption). During the peak of the business cycle it is likely that many of the persons

in the sample spend above what they do at the trough. Thus it is likely that there will

be contemporaneous correlation between the errors in the system.

E[εtiεsj] =







σij if i = j

0 if i 6= j

Thus we may write the contemporaneous covariance matrix (Σ) as

Σ =













σ11 σ12 · · · σ1M

σ21 σ22 · · · σ2M

...
...

. . .
...

σM1 σM2 · · · σMM













The total covariance matrix is, in this case, given by

Ω =













Σ 0 · · · 0

0 Σ · · · 0
...

...
. . .

...

0 0 · · · Σ













= Σ⊗ IT

If Ω were known we would use GLS to get optimum estimates of β. In this case we

can obtain a consistent estimate of Σ from the residuals in the equation by equation

OLS estimate that we have just completed. We can then use this consistent estimate in

Feasible GLS.

54

Omega = kron(eqols.sigsq1,eye(20,20)); % Page page 256

eqsur.beta= inv(X’*inv(Omega)*X)*X’*inv(Omega)*Y;

eqsur.yhat = X * eqsur.beta;

eqsur.uhat = Y - eqsur.yhat;

eqsur.temp = reshape(eqsur.uhat,20,5);

eqsur.omega = eqsur.temp’ * eqsur.temp /size(X_GM,1); %(size(X_GM,1)-size(X_GM,2));

eqsur.covar = inv(X’*inv(kron(eqsur.omega, eye(20)))*X);

eqsur.sdbeta = sqrt(diag(eqsur.covar));

eqsur.tbeta = eqsur.beta ./ eqsur.sdbeta;

eqsur.se = sqrt(diag(eqsur.omega));

%print results

fprintf(’SUR estimates\n’);

for jj = 1:5 % Loop over firms

fprintf(’\n\n\n’)

disp(’ coef sd t-stat’)

for ii=1:3 %Loop over coefficients

fprintf(’%s%10.4f%10.4f%10.4f\n’,label(ii), ...

eqsur.beta(ii+(jj-1)*3),eqsur.sdbeta(ii+(jj-1)*3), ...

eqsur.tbeta(ii+(jj-1)*3))

end

fprintf(’Standard Error is %10.4f\n’,eqsur.se(jj));

end

SUR estimates

coef sd t-stat

C -168.1134 84.9017 -1.9801

F 0.1219 0.0204 5.9700

C 0.3822 0.0321 11.9109

Standard Error is 84.9836

coef sd t-stat

C 0.9980 11.5661 0.0863

F 0.0689 0.0170 4.0473

C 0.3084 0.0260 11.8766

Standard Error is 12.3789

55

coef sd t-stat

C -21.1374 24.3479 -0.8681

F 0.0371 0.0115 3.2327

C 0.1287 0.0212 6.0728

Standard Error is 26.5467

coef sd t-stat

C 1.4075 5.9944 0.2348

F 0.0564 0.0106 5.3193

C 0.0429 0.0382 1.1233

Standard Error is 9.7420

coef sd t-stat

C 62.2563 93.0441 0.6691

F 0.1214 0.0451 2.6948

C 0.3691 0.1070 3.4494

Standard Error is 90.4117

SUR in LeSage toolbox

y(1).eq = Y_GM;

y(2).eq = Y_GE;

y(3).eq = Y_CH;

y(4).eq = Y_WE;

y(5).eq = Y_US;

XX(1).eq = X_GM;

XX(2).eq = X_GE;

XX(3).eq = X_CH;

XX(4).eq = X_WE;

XX(5).eq = X_US;

neqs=5;

sur_result=sur(neqs,y,XX);

prt(sur_result)

Seemingly Unrelated Regression -- Equation 1

System R-sqr = 0.8694

R-squared = 0.9207

Rbar-squared = 0.9113

56

sigma^2 = 458183.2995

Durbin-Watson = 0.0400

Nobs, Nvars = 20, 3

Variable Coefficient t-statistic t-probability

variable 1 -168.113426 -1.980094 0.064116

variable 2 0.121906 5.969973 0.000015

variable 3 0.382167 11.910936 0.000000

Seemingly Unrelated Regression -- Equation 2

System R-sqr = 0.8694

R-squared = 0.9116

Rbar-squared = 0.9012

sigma^2 = 8879.1368

Durbin-Watson = 0.0310

Nobs, Nvars = 20, 3

Variable Coefficient t-statistic t-probability

variable 1 0.997999 0.086286 0.932247

variable 2 0.068861 4.047270 0.000837

variable 3 0.308388 11.876603 0.000000

Seemingly Unrelated Regression -- Equation 3

System R-sqr = 0.8694

R-squared = 0.6857

Rbar-squared = 0.6488

sigma^2 = 11785.8684

Durbin-Watson = 0.0202

Nobs, Nvars = 20, 3

Variable Coefficient t-statistic t-probability

variable 1 -21.137397 -0.868140 0.397408

variable 2 0.037053 3.232726 0.004891

variable 3 0.128687 6.072805 0.000012

Seemingly Unrelated Regression -- Equation 4

System R-sqr = 0.8694

R-squared = 0.7264

Rbar-squared = 0.6943

57

sigma^2 = 2042.8631

Durbin-Watson = 0.0323

Nobs, Nvars = 20, 3

Variable Coefficient t-statistic t-probability

variable 1 1.407487 0.234802 0.817168

variable 2 0.056356 5.319333 0.000056

variable 3 0.042902 1.123296 0.276925

Seemingly Unrelated Regression -- Equation 5

System R-sqr = 0.8694

R-squared = 0.4528

Rbar-squared = 0.3884

sigma^2 = 173504.8346

Durbin-Watson = 0.0103

Nobs, Nvars = 20, 3

Variable Coefficient t-statistic t-probability

variable 1 62.256312 0.669105 0.512413

variable 2 0.121402 2.694815 0.015340

variable 3 0.369111 3.449403 0.003062

Cross-equation sig(i,j) estimates

equation eq 1 eq 2 eq 3 eq 4 eq 5

eq 1 7222.2204 -315.6107 601.6316 129.7644 -2446.3171

eq 2 -315.6107 153.2369 3.1478 16.6475 414.5298

eq 3 601.6316 3.1478 704.7290 201.4385 1298.6953

eq 4 129.7644 16.6475 201.4385 94.9067 613.9925

eq 5 -2446.3171 414.5298 1298.6953 613.9925 8174.2798

Cross-equation correlations

equation eq 1 eq 2 eq 3 eq 4 eq 5

eq 1 1.0000 -0.3000 0.2667 0.1567 -0.3184

eq 2 -0.3000 1.0000 0.0096 0.1380 0.3704

eq 3 0.2667 0.0096 1.0000 0.7789 0.5411

eq 4 0.1567 0.1380 0.7789 1.0000 0.6971

eq 5 -0.3184 0.3704 0.5411 0.6971 1.0000

58

6.2 Exercise – Using Matlab to estimate a simultaneous equa-

tion systems

Consider the demand-supply model

qt = β11 + β21xt2 + β31xt2 + γ21pt + ut1 (1)

qt = β12 + β42xt4 + β52xt5 + γ22pt + ut2, (2)

where qt is the log of quantity, pt is the log of price, xt2 is the log of income, xt3 is

a dummy variable that accounts for demand shifts xt4 and xt5 are input prices. Thus

equations (1) and (2) are demand and supply functions respectively. 120 observations

generated by this model are in the file demand-supply.csv

1. Comment on the identification of the system. Why can the system not be esti-

mated using equation by equation OLS. For each of the estimates below produce

estimates, standard errors and t-statistics of each coefficient. Also produce stan-

dard errors for each equation.

2. Estimate the system equation by equation using OLS.

3. Estimate the system equation by equation using 2SLS. Compare the results with

the OLS estimates.

4. Set up the matrices of included variables, exogenous variables required to do system

estimation.

5. Do OLS estimation using the stacked system and compare results with the equation

by equation estimates.

6. Do 2SLS estimation using the stacked system and compare results with the equa-

tion by equation estimates.

7. Do 3SLS estimation using the stacked system and compare results with the 2SLS

estimates.

8. Comment on the identification of the system.

9. How can the method be generalised to estimate other GMM estimators? Estimate

the optimum GMM estimator for the system and compare your results with the

previous estimators.

7 User written functions in MATLAB

One of the most useful facilities in MATLAB is the facility to write ones own functions

and use them in the same way as a native MATLAB functions. We are already familiar

with m-files which contain lists of MATLAB instructions. Such files are known as script

59

files and allow us to do repeat an analysis without having to retype all the instructions.

Suppose we wish to write a function that estimates the density function of a normal

distribution,

1√
2π σ

exp− (x− µ)2

2σ2

, we have the following on a file normdensity.m

function f = normdensity(z, mu, sigma);

% Calculates the Density Function of the Normal Distribution

% with mean mu

% and standard deviation sigma

% at a point z

% sigma must be a positive non-zero real number

if sigma <= 0

fprintf(’Invalid input\n’);

f = NaN;

else

f = (1/(sqrt(2*pi)*sigma))*exp(-(z-mu)^2/(2*sigma^2));

end

Note the following

1. The file starts with the keyword function. This is to indicate that this m-file is a

function definition.

2. In the first line the f indicates that the value of f when the file has been “run” is

the value that will be returned.

3. The function is called with normdensity(z, mu, sigma) where z mu and sigma are

given values in calling the function.

4. The commented lines immediately after the first line are a help system for the

function

5. All variables within a function are local to the function. Thus if there is a variable

within a function called x and one in the program with the same name the one

in the program is used when the program is in operation. Once the program has

been run the value in the program is forgotten and the value outside the program

is used.

The use of the function normdensity can be demonstrated as follows –

Get help for normdensity function.

help normdensity

60

Calculates the Density Function of the Normal Distribution

with mean mu

and standard deviation sigma

at a point z

sigma must be a positive non-zero real number

Evaluate Standard Normal density function at zero

normdensity(0,0,1)

ans =

0.3989

Plot standard normal density function

fplot(’normdensity(x,0,1)’,[-3 3])

−3 −2 −1 0 1 2 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

8 The LeSage Econometric Toolbox

If you are accustomed to using one of the many packages that deal specifically with

econometrics you may think that MATLAB takes a long time to do simple things. It

is also clear that many or the more difficult tasks are often easier in MATLAB than in

these packages. MATLAB is less of a “‘black box” than many of the other programs.

One must really learn and understand the algebra before one can use MATLAB for

econometrics. One also knows exactly what one is doing when one has written the

routines in MATLAB.

61

The big problem is the lack of elementary econometric facilities in MATLAB. The LeSage

MATLAB econometric package adds many of the required functions. It contains about

300 functions, utilities and demonstration programs. A list is included in Appendix A to

this note. Full details are available in the toolbox manual which is available at http://

www.spatial-econometrics.com/. The toolbox is designed to produce documentation,

example programs, printed and graphical output across a wide range of econometric

procedures.

Availability on Public Access Computers

The toolbox has been added to the MATLAB system on all Public Access computers

on the TCD network. The functions are available in the same way as the ordinary

MATLAB functions. For example, if y is a n × 1 vector and X is a n × k matrix, the

instruction

result = ols(y,X)

calculates the regression of y on X and various related statistics. The instruction

prt_reg(result)

produces a summary of the result.

Help is available in the command line in MATLAB. Help on the ols function can be

found as follows

>> help ols

PURPOSE: least-squares regression

USAGE: results = ols(y,x)

where: y = dependent variable vector (nobs x 1)

x = independent variables matrix (nobs x nvar)

RETURNS: a structure

results.meth = ’ols’

results.beta = bhat (nvar x 1)

results.tstat = t-stats (nvar x 1)

results.bstd = std deviations for bhat (nvar x 1)

results.yhat = yhat (nobs x 1)

results.resid = residuals (nobs x 1)

results.sige = e’*e/(n-k) scalar

results.rsqr = rsquared scalar

results.rbar = rbar-squared scalar

results.dw = Durbin-Watson Statistic

62

results.nobs = nobs

results.nvar = nvars

results.y = y data vector (nobs x 1)

results.bint = (nvar x 2) vector with 95% confidence intervals on beta

SEE ALSO: prt(results), plt(results)

Overloaded functions or methods (ones with the same name in other directories)

help localmod/ols.m

After running the ols function a structure containing the results is available. The

variable results.beta contains the estimated β-coefficients, results.tstat their t-

statistics, results.bint the 95% confidence intervals for the estimates and similar for

the other variables defined. Each estimation command produces its results in a similar

structure. To see how to print a summary of these results

>> help prt_reg

PURPOSE: Prints output using regression results structures

USAGE: prt_reg(results,vnames,fid)

Where: results = a structure returned by a regression

vnames = an optional vector of variable names

fid = optional file-id for printing results to a file

(defaults to the MATLAB command window)

NOTES: e.g. vnames = strvcat(’y’,’const’,’x1’,’x2’);

e.g. fid = fopen(’ols.out’,’wr’);

use prt_reg(results,[],fid) to print to a file with no vnames

--

RETURNS: nothing, just prints the regression results

--

SEE ALSO: prt, plt

Thus to display the results of the previous regression on the screen in MATLAB one

would enter3

prt_reg(result)

3result in this context is the name of a MATLAB variable and one could substitute for result any

valid MATLAB variable name.

63

Availability on other PCs

The LeSage toolbox is available for download free on the internet. The only require-

ment on the package web site is that “Anyone is free to use these routines, no attribu-

tion (or blame) need be placed on the author/authors.” The econometrics package

is not available by default when MATLAB is installed on a PC. It may be down-

loaded from http://www.spatial-econometrics.com/. The toolbox is provided as

a zipped file which can be unzipped to the MATLAB toolbox directory on your PC (

C:\ProgramFiles\MATLAB704\toolbox or my PC - something similar on yours). This

should create a subdirectory econometrics in this toolbox directory This econometrics

directory will contain a large number of subdirectories containing the various economet-

ric functions. When you next start MATLAB you can access the functions by adding

to the path that MATLAB uses to search for functions. You can do the when you next

start MATLAB by —File—Set Path— selecting the Add with sub-folders button and

navigating to and selecting the econometrics folder. If you select save after entering the

directory the functions will be available each time you start MATLAB. If you have the

required permissions you can also access the toolbox from the IIS server.

The toolbox provides full source code for each function. Thus if no function provides

the capabilities that you require it may be possible the amend the function and add the

required functionality. If you do such work you should consider submitting you program

for inclusion in a future version of the toolbox. By collaborating in this way you are

helping to ensure the future of the project

The programs in the toolbox are examples of good programming practice and have good

comments. If you are starting some serious programming in MATLAB you could learn

a lot about programming by reading these programs.

Sample run from the LeSage toolbox

To illustrate the use of the LeSage toolbox I set out below the output of the demon-

stration program demo reg.m. This program illustrates many of the various univariate

estimation procedures available in the toolbox.

% PURPOSE: demo using most all regression functions

%

% ols,hwhite,nwest,ridge,theil,tsls,logit,probit,tobit,robust

%---

% USAGE: demo_all

%---

clear all;

rand(’seed’,10);

n = 100; k=3;

64

xtmp = randn(n,k-1);

tt = 1:n;

ttp = tt’;

e = randn(n,1).*ttp; % heteroscedastic error term

%e = randn(n,1); % homoscedastic error term

b = ones(k,1);

iota = ones(n,1);

x = [iota xtmp];

% generate y-data

y = x*b + e;

vnames=strvcat(’yvar’,’iota’,’x1’,’x2’);

% * * * * * * * demo ols regression

reso = ols(y,x);

prt(reso,vnames);

% * * * * * * * demo hwhite regression

res = hwhite(y,x);

prt(res,vnames);

% * * * * * * * demo nwest regression

nlag=2;

res = nwest(y,x,nlag);

prt(res,vnames);

% * * * * * * * demo ridge regresson

rres = ridge(y,x);

prt(rres,vnames);

% * * * * * * * demo logit regression

n = 24;

y = zeros(n,1);

y(1:14,1) = ones(14,1);

% (data from Spector and Mazzeo, 1980)

xdata = [21 24 25 26 28 31 33 34 35 37 43 49 ...

51 55 25 29 43 44 46 46 51 55 56 58];

iota = ones(n,1);

x = [iota xdata’];

65

vnames=strvcat(’days’,’iota’,’response’);

res = logit(y,x);

prt(res,vnames);

% * * * * * * * demo probit regression

n = 32; k=4;

y = zeros(n,1); % grade variable

y(5,1) = 1;

y(10,1) = 1;

y(14,1) = 1;

y(20,1) = 1;

y(22,1) = 1;

y(25,1) = 1;

y(25:27,1) = ones(3,1);

y(29,1) = 1;

y(30,1) = 1;

y(32,1) = 1;

x = zeros(n,k);

x(1:n,1) = ones(n,1); % intercept

x(19:32,2) = ones(n-18,1); % psi variable

tuce = [20 22 24 12 21 17 17 21 25 29 20 23 23 25 26 19 ...

25 19 23 25 22 28 14 26 24 27 17 24 21 23 21 19];

x(1:n,3) = tuce’;

gpa = [2.66 2.89 3.28 2.92 4.00 2.86 2.76 2.87 3.03 3.92 ...

2.63 3.32 3.57 3.26 3.53 2.74 2.75 2.83 3.12 3.16 ...

2.06 3.62 2.89 3.51 3.54 2.83 3.39 2.67 3.65 4.00 ...

3.10 2.39];

x(1:n,4) = gpa’;

vnames=strvcat(’grade’,’iota’,’psi’,’tuce’,’gpa’);

resp = probit(y,x);

prt(resp,vnames);

% results reported in Green (1997, chapter 19)

% b = [-7.452, 1.426, 0.052, 1.626]

66

% * * * * * * * demo theil-goldberger regression

% generate a data set

nobs = 100;

nvar = 5;

beta = ones(nvar,1);

beta(1,1) = -2.0;

xmat = randn(nobs,nvar-1);

x = [ones(nobs,1) xmat];

evec = randn(nobs,1);

y = x*beta + evec*10.0;

Vnames = strvcat(’y’,’const’,’x1’,’x2’,’x3’,’x4’);

% set up prior

rvec = [-1.0 % prior means for the coefficients

1.0

2.0

2.0

1.0];

rmat = eye(nvar);

bv = 10000.0;

% umat1 = loose prior

umat1 = eye(nvar)*bv; % initialize prior variance as diffuse

for i=1:nvar;

umat1(i,i) = 1.0; % overwrite diffuse priors with informative prior

end;

lres = theil(y,x,rvec,rmat,umat1);

prt(lres,Vnames);

% * * * * * * * demo two-stage least-squares regression

nobs = 200;

67

x1 = randn(nobs,1);

x2 = randn(nobs,1);

b1 = 1.0;

b2 = 1.0;

iota = ones(nobs,1);

y1 = zeros(nobs,1);

y2 = zeros(nobs,1);

evec = randn(nobs,1);

% create simultaneously determined variables y1,y2

for i=1:nobs;

y1(i,1) = iota(i,1)*1.0 + x1(i,1)*b1 + evec(i,1);

y2(i,1) = iota(i,1)*1.0 + y1(i,1)*1.0 + x2(i,1)*b2 + evec(i,1);

end;

vname2 = [’y2-eqn ’,

’y1 var ’,

’constant’,

’x2 var ’];

% use all exogenous in the system as instruments

xall = [iota x1 x2];

% do tsls regression

result2 = tsls(y2,y1,[iota x2],xall);

prt(result2,vname2);

% * * * * * * * demo robust regression

% generate data with 2 outliers

nobs = 100;

nvar = 3;

vnames = strvcat(’y-variable’,’constant’,’x1’,’x2’);

x = randn(nobs,nvar);

x(:,1) = ones(nobs,1);

beta = ones(nvar,1);

68

evec = randn(nobs,1);

y = x*beta + evec;

% put in 2 outliers

y(75,1) = 10.0;

y(90,1) = -10.0;

% get weighting parameter from OLS

% (of course you’re free to do differently)

reso = ols(y,x);

sige = reso.sige;

% set up storage for bhat results

bsave = zeros(nvar,5);

bsave(:,1) = ones(nvar,1);

% loop over all methods producing estimates

for i=1:4;

wfunc = i;

wparm = 2*sige; % set weight to 2 sigma

res = robust(y,x,wfunc,wparm);

bsave(:,i+1) = res.beta;

end;

% column and row-names for mprint function

in.cnames = strvcat(’Truth’,’Huber t’,’Ramsay’,’Andrews’,’Tukey’);

in.rnames = strvcat(’Parameter’,’constant’,’b1’,’b2’);

fprintf(1,’Comparison of alternative robust estimators \n’);

mprint(bsave,in);

res = robust(y,x,4,2);

prt(res,vnames);

% * * * * * * * demo regresson with t-distributed errors

res = olst(y,x);

prt(res,vnames);

69

% * * * * * * * demo lad regression

res = lad(y,x);

prt(res,vnames);

% * * * * * * * demo tobit regression

n=100; k=5;

x = randn(n,k);

x(:,1) = ones(n,1);

beta = ones(k,1)*0.5;

y = x*beta + randn(n,1);

% now censor the data

for i=1:n

if y(i,1) < 0

y(i,1) = 0.0;

end;

end;

resp = tobit(y,x);

vnames = [’y ’,

’iota ’,

’x1var ’,

’x2var ’,

’x3var ’,

’x4var ’];

prt(resp,vnames);

% * * * * * * * demo thsls regression

clear all;

nobs = 100;

neqs = 3;

x1 = randn(nobs,1);

x2 = randn(nobs,1);

x3 = randn(nobs,1);

b1 = 1.0;

b2 = 1.0;

70

b3 = 1.0;

iota = ones(nobs,1);

y1 = zeros(nobs,1);

y2 = zeros(nobs,1);

y3 = zeros(nobs,1);

evec = randn(nobs,3);

evec(:,2) = evec(:,3) + randn(nobs,1); % create cross-eqs corr

% create simultaneously determined variables y1,y2

for i=1:nobs;

y1(i,1) = iota(i,1)*10.0 + x1(i,1)*b1 + evec(i,1);

y2(i,1) = iota(i,1)*10.0 + y1(i,1)*1.0 + x2(i,1)*b2 + evec(i,2);

y3(i,1) = iota(i,1)*10.0 + y2(i,1)*1.0 + x2(i,1)*b2 + x3(i,1)*b3 + evec(i,3);

end;

vname1 = [’y1-LHS ’,

’constant’,

’x1 var ’];

vname2 = [’y2-LHS ’,

’y1 var ’,

’constant’,

’x2 var ’];

vname3 = [’y3-LHS ’,

’y2 var ’,

’constant’,

’x2 var ’,

’x3 var ’];

% set up a structure for y containing y’s for each eqn

y(1).eq = y1;

y(2).eq = y2;

y(3).eq = y3;

% set up a structure for Y (RHS endogenous) for each eqn

Y(1).eq = [];

Y(2).eq = [y1];

Y(3).eq = [y2];

71

% set up a structure fo X (exogenous) in each eqn

X(1).eq = [iota x1];

X(2).eq = [iota x2];

X(3).eq = [iota x2 x3];

% do thsls regression

result = thsls(neqs,y,Y,X);

vname = [vname1

vname2

vname3];

prt(result,vname);

% * * * * * * * demo olsc, olsar1 regression

% generate a model with 1st order serial correlation

n = 200;

k = 3;

tt = 1:n;

evec = randn(n,1);

xmat = randn(n,k);

xmat(:,1) = ones(n,1);

beta = ones(k,1);

beta(1,1) = 10.0; % constant term

y = zeros(n,1);

u = zeros(n,1);

for i=2:n;

u(i,1) = 0.4*u(i-1,1) + evec(i,1);

y(i,1) = xmat(i,:)*beta + u(i,1);

end;

% truncate 1st 100 observations for startup

yt = y(101:n,1);

xt = xmat(101:n,:);

n = n-100; % reset n to reflect truncation

Vnames = [’y ’,

’cterm’,

72

’x2 ’,

’x3 ’];

% do Cochrane-Orcutt ar1 regression

result = olsc(yt,xt);

prt(result,Vnames);

% do maximum likelihood ar1 regression

result2 = olsar1(yt,xt);

prt(result2,Vnames);

% * * * * * * * demo switch_em, hmarkov_em regressions

clear all;

% generate data from switching regression model

nobs = 100; n1 = 3; n2 = 3; n3 = 3;

b1 = ones(n1,1); b2 = ones(n2,1)*5; b3 = ones(n3,1);

sig1 = 1; sig2 = 1;

randn(’seed’,201010);

x1 = randn(nobs,n1); x2 = randn(nobs,n2); x3 = randn(nobs,n3);

ytruth = zeros(nobs,1);

for i=1:nobs;

if x3(i,:)*b3 <= 0

y(i,1) = x1(i,:)*b1 + randn(1,1);

ytruth(i,1) = 0;

else

y(i,1) = x2(i,:)*b2 + randn(1,1);

ytruth(i,1) = 1;

end;

end;

result = switch_em(y,x1,x2,x3,b1,b2,b3);

vnames1 = strvcat(’y1’,’x1_1’,’x1_2’,’x1_3’);

vnames2 = strvcat(’y2’,’x2_1’,’x2_2’,’x2_3’);

vnames3 = strvcat(’x3_1’,’x3_2’,’x3_3’);

vnames = [vnames1

vnames2

73

vnames3];

prt(result,vnames);

Ordinary Least-squares Estimates

Dependent Variable = yvar

R-squared = 0.0018

Rbar-squared = -0.0188

sigma^2 = 3075.1129

Durbin-Watson = 1.9735

Nobs, Nvars = 100, 3

Variable Coefficient t-statistic t-probability

iota -1.899455 -0.338977 0.735360

x1 -2.301110 -0.358531 0.720725

x2 -1.298278 -0.220027 0.826312

White Heteroscedastic Consistent Estimates

Dependent Variable = yvar

R-squared = 0.0018

Rbar-squared = -0.0188

sigma^2 = 3075.1129

Durbin-Watson = 1.9735

Nobs, Nvars = 100, 3

Variable Coefficient t-statistic t-probability

iota -1.899455 -0.322516 0.747756

x1 -2.301110 -0.390648 0.696914

x2 -1.298278 -0.176022 0.860644

Newey-West hetero/serial Consistent Estimates

Dependent Variable = yvar

R-squared = 0.0018

Rbar-squared = -0.0188

sigma^2 = 3075.1129

Durbin-Watson = 1.9735

Nobs, Nvars = 100, 3

Variable Coefficient t-statistic t-probability

iota -1.899455 -0.343861 0.731695

x1 -2.301110 -0.349591 0.727403

74

x2 -1.298278 -0.189757 0.849896

Ridge Regression Estimates

Dependent Variable = yvar

R-squared = -0.0007

Rbar-squared = -0.0213

sigma^2 = 3082.6476

Durbin-Watson = 1.9909

Ridge theta = 10.253908

Nobs, Nvars = 100, 3

Variable Coefficient t-statistic t-probability

iota -0.164038 -0.099106 0.921259

x1 -0.211398 -0.110545 0.912205

x2 -0.089360 -0.051208 0.959265

Logit Maximum Likelihood Estimates

Dependent Variable = days

McFadden R-squared = 0.1476

Estrella R-squared = 0.1951

LR-ratio, 2*(Lu-Lr) = 4.8131

LR p-value = 0.0282

Log-Likelihood = -13.8941

of iterations = 6

Convergence criterion = 5.2516501e-012

Nobs, Nvars = 24, 2

of 0’s, # of 1’s = 10, 14

Variable Coefficient t-statistic t-probability

iota 3.819440 2.081230 0.049260

response -0.086483 -2.001038 0.057876

Probit Maximum Likelihood Estimates

Dependent Variable = grade

McFadden R-squared = 0.3775

Estrella R-squared = 0.4566

LR-ratio, 2*(Lu-Lr) = 15.5459

LR p-value = 0.0014

Log-Likelihood = -12.8188

75

of iterations = 7

Convergence criterion = 2.1719878e-010

Nobs, Nvars = 32, 4

of 0’s, # of 1’s = 21, 11

Variable Coefficient t-statistic t-probability

iota -7.452320 -2.931131 0.006656

psi 1.426332 2.397045 0.023445

tuce 0.051729 0.616626 0.542463

gpa 1.625810 2.343063 0.026459

Theil-Goldberger Regression Estimates

Dependent Variable = y

R-squared = 0.0459

Rbar-squared = 0.0057

sigma^2 = 103.8523

Durbin-Watson = 2.1050

Nobs, Nvars = 100, 5

Variable Prior Mean Std Deviation

const -1.000000 1.000000

x1 1.000000 1.000000

x2 2.000000 1.000000

x3 2.000000 1.000000

x4 1.000000 1.000000

Posterior Estimates

Variable Coefficient t-statistic t-probability

const -1.643936 -2.287731 0.024371

x1 0.591000 0.815968 0.416559

x2 2.176380 2.959987 0.003884

x3 1.674902 2.298068 0.023751

x4 0.629662 0.809268 0.420383

Two Stage Least-squares Regression Estimates

Dependent Variable = y2-eqn

R-squared = 0.7577

Rbar-squared = 0.7552

sigma^2 = 1.4553

76

Durbin-Watson = 1.7741

Nobs, Nvars = 200, 3

Variable Coefficient t-statistic t-probability

y1 var 0.849977 8.010105 0.000000

constant 1.192429 8.683790 0.000000

x2 var 0.989913 12.700675 0.000000

Comparison of alternative robust estimators

Parameter Truth Huber t Ramsay Andrews Tukey

constant 1.0000 0.9627 1.0288 0.9558 0.9159

b1 1.0000 1.0588 1.0498 1.0587 1.1143

b2 1.0000 0.8019 0.8862 0.8090 0.9775

Robust Regression Estimates

Dependent Variable = y-variable

R-squared = 0.3012

Rbar-squared = 0.2868

Weighting meth = tukey

Weight param = 2.0000

sigma^2 = 3.8269

Durbin-Watson = 1.7969

Nobs, Nvars = 100, 3

iterations = 19

converg crit = 8.0813581e-006

Variable Coefficient t-statistic t-probability

constant 0.939790 3.792787 0.000259

x1 1.093821 5.003626 0.000003

x2 1.062278 4.701951 0.000009

Regression with t-distributed errors

Dependent Variable = y-variable

R-squared = 0.3096

Rbar-squared = 0.2953

sigma^2 = 3.6678

Durbin-Watson = 1.7974

Nobs, Nvars = 100, 3

iterations = 13

converg crit = 2.5709227e-009

77

Variable Coefficient t-statistic t-probability

constant 0.921545 2.331888 0.021775

x1 1.106885 2.969556 0.003758

x2 0.981229 2.540883 0.012643

Least-Absolute Deviation Estimates

Dependent Variable = y-variable

R-squared = 0.3126

Rbar-squared = 0.2984

sigma^2 = 3.7647

Durbin-Watson = 1.7916

Nobs, Nvars = 100, 3

iterations = 37

convergence = 8.8817842e-016

Variable Coefficient t-statistic t-probability

constant 0.981256 131.486643 0.000000

x1 1.071320 161.392625 0.000000

x2 0.942192 267.374908 0.000000

Tobit Regression Estimates

Dependent Variable = y

R-squared = 0.9905

Rbar-squared = 0.9901

sigma^2 = 1.4500

Log-Likelihood = -128.86295

iterations = 11

optimization = bfgs

Nobs, Nvars = 100, 5

of censored = 32

time (in secs) = 0.2

gradient at solution

Variable Gradient

iota 0.00023491

x1var -0.00032300

x2var -0.00027021

x3var 0.00025956

x4var -0.00006834

78

sigma 0.00005784

Variable Coefficient t-statistic t-probability

iota 0.524686 3.558525 0.000584

x1var 0.712329 5.060812 0.000002

x2var 0.557483 4.419124 0.000026

x3var 0.456688 3.354569 0.001143

x4var 0.567654 4.046847 0.000106

Three Stage Least-squares Estimates -- Equation 1

Dependent Variable = y1-LHS

R-squared = 0.5307

Rbar-squared = 0.5259

sigma^2 = 0.8239

Durbin-Watson = 1.8589

Nobs, Nvars = 100, 2

Variable Coefficient t-statistic t-probability

constant 9.919085 108.989267 0.000000

x1 var 1.063664 10.642418 0.000000

Three Stage Least-squares Estimates -- Equation 2

Dependent Variable = y2-LHS

R-squared = 0.6531

Rbar-squared = 0.6460

sigma^2 = 2.1255

Durbin-Watson = 2.2631

Nobs, Nvars = 100, 3

Variable Coefficient t-statistic t-probability

y1 var 1.271276 8.565909 0.000000

constant 7.252903 4.869941 0.000004

x2 var 1.016608 7.700645 0.000000

Three Stage Least-squares Estimates -- Equation 3

Dependent Variable = y3-LHS

R-squared = 0.9454

Rbar-squared = 0.9436

sigma^2 = 0.7704

79

Durbin-Watson = 2.2675

Nobs, Nvars = 100, 4

Variable Coefficient t-statistic t-probability

y2 var 1.072609 15.286953 0.000000

constant 8.513420 6.070655 0.000000

x2 var 0.884799 7.971522 0.000000

x3 var 1.029391 18.715601 0.000000

Cross-equation sig(i,j) estimates

equation y1-LHS y2-LHS y3-LHS

y1-LHS 0.8239 -0.1371 0.0736

y2-LHS -0.1371 2.1238 0.9340

y3-LHS 0.0736 0.9340 0.7626

Cross-equation correlations

equation y1-LHS y2-LHS y3-LHS

y1-LHS 1.0000 -0.1036 0.0928

y2-LHS -0.1036 1.0000 0.7339

y3-LHS 0.0928 0.7339 1.0000

Cochrane-Orcutt serial correlation Estimates

Dependent Variable = y

R-squared = 0.6751

Rbar-squared = 0.6683

sigma^2 = 1.0163

Durbin-Watson = 2.0564

Rho estimate = 0.4405

Rho t-statistic = 4.8569

Rho probability = 0.0000

Nobs, Nvars = 99, 3

Iteration information

rho value convergence iteration

0.440309 0.440309 1

0.440463 0.000154 2

0.440464 0.000000 3

Variable Coefficient t-statistic t-probability

80

cterm 10.109079 55.582539 0.000000

x2 1.008878 10.021495 0.000000

x3 1.117656 11.414945 0.000000

Maximum likelihood ar1 serial correlation Estimates

Dependent Variable = y

R-squared = 0.7012

Rbar-squared = 0.6950

sigma^2 = 1.0124

Durbin-Watson = 2.0425

Rho estimate = 0.4387

Rho t-statistic = 4.8330

Rho probability = 0.0000

Nobs, Nvars = 100, 3

Iterations = 4

Log Likelihood = -229.46078

Time (in secs) = 0.0

Variable Coefficient t-statistic t-probability

cterm 10.131625 56.672826 0.000000

x2 1.009420 10.039487 0.000000

x3 1.125448 11.566906 0.000000

EM Estimates - Switching Regression model

Regime 1 equation

Dependent Variable = y1

R-squared = 0.9377

sigma^2 = 0.8997

Nobs, Nvars = 100, 3

Variable Coefficient t-statistic t-probability

x1_1 1.182283 8.051477 0.000000

x1_2 0.998518 6.233840 0.000000

x1_3 1.038357 7.625493 0.000000

Regime 2 equation

Dependent Variable = y2

R-squared = 0.9997

sigma^2 = 1.0544

81

Nobs, Nvars = 100, 3

Variable Coefficient t-statistic t-probability

x2_1 5.164178 25.388701 0.000000

x2_2 4.763510 29.745264 0.000000

x2_3 4.909741 30.189646 0.000000

Switching equation

Conv criterion = 0.00099191605

iterations = 43

obs regime 1 = 54

obs regime 2 = 46

log Likelihood = -395.16724

Nobs, Nvars = 100, 3

Variable Coefficient t-statistic t-probability

x3_1 1.027361 10.097151 0.000000

x3_2 1.061341 10.089601 0.000000

x3_3 0.998786 11.024366 0.000000

9 Maximum Likelihood Estimation using Numerical

Techniques

In many cases of maximum likelihood estimation there is no analytic solution to the

optimisation problem and one must use numerical techniques. This basic maximum

likelihood algorithm is similar in many econometric packages. In most cases one works

with the log-likelihood rather than the likelihood. Note that many packages contain a

minimisation routine rather than a maximisation and thus one seeks to minimise the

negative of the log-likelihood. The steps involved are as follows –

1. Write a MATLAB function to estimate the log-likelihood.

2. Load and process data.

3. Calculate an initial estimate of the parameters to be estimated. This will serve as

starting values for the optimisation routine.

4. Check the defaults for the optimisation routine (e.g. maximum number of iter-

ations, convergence criteria). If your initial attempt does not converge you may

have to change these and/or use different starting values.

5. Call the optimisation routine. Optimisation routines are available in the MATLAB

optim toolbox or in the Le Sage econometrics package. As the optim package

82

is an add-on which is not included in standard MATLAB I shall illustrate the

routines using optimisation routines taken from the econometrics package

6. Print out results.

I shall illustrate the procedure by replicating the tobit analysis of tobacco expenditure

on in Table 7.9 on page 237 of Verbeek (2008). The population is assumed to be censored

at y = 0. Define

d =







1 if y > 0

0 if y ≤ 0.

The log-likelihood can then be written

N
∑

i=1

[

di(−
1

2
ln 2π − 1

2
lnσ2 − 1

2σ2
(yi − xiβ)

2) + (1− di) ln

(

1− Φ

(

xβ

σ

))]

1. Matlab program to calculate tobit log-likelihood

This is an amended version of a sample program included with the Le Sage economet-

rics package

function like = to_liked(b,y,x);

% PURPOSE: evaluate tobit log-likelihood

% to demonstrate optimization routines

%---

% USAGE: like = to_liked(b,y,x)

% where: b = parameter vector (k x 1)

% y = dependent variable vector (n x 1)

% x = explanatory variables matrix (n x m)

%---

% NOTE: this function returns a scalar equal to the

% negative of the log likelihood function

% or a scalar sum of the vector depending

% on the value of the flag argument

% k ~= m because we may have additional parameters

% in addition to the m bhat’s (e.g. sigma)

%---

% error check

if nargin ~= 3,error(’wrong # of arguments to to_like1’); end;

[m1 m2] = size(b);

if m1 == 1

b = b’;

end;

83

h = .000001; % avoid sigma = 0

[m junk] = size(b);

beta = b(1:m-1); % pull out bhat

sigma = max([b(m) h]); % pull out sigma

xb = x*beta;

llf1 = -0.5*log(2*pi) - 0.5*log(sigma^2) -((y-xb).^2)./(2*sigma^2); %amended

xbs = xb./sigma; cdf = .5*(1+erf(xbs./sqrt(2))); %amended

llf2 = log(h+(1-cdf));

llf = (y > 0).*llf1 + (y <= 0).*llf2;

like = -sum(llf); % scalar result

2. Load and process data

clear;

load cigarette

% set up variables

y = sharetob;

[nobs, dump] = size(tobacco) ;

X = [ones(nobs,1), age, nadults, nkids, nkids2, lnexp, age.*lnexp, nadults.*lnexp];

[nobs, k]=size(X);

3. Estimate starting values using OLS

beta0 = (X’*X)\X’*y ;

sd = sqrt((y-X*beta0)’*(y-X*beta0))/(nobs-1);

parm = [beta0

sd];

4 .Set up dfp min defaults - change maximum number of iterations

info.maxit = 1000;

5. Call optimisation routine

result2 = dfp_min(’to_liked’,parm,info,y,X);

Extract results and print

% Extract results

beta = result2.b;

sdbeta = sqrt(diag(inv(result2.hess)));

84

zstat = beta ./ sdbeta;

%row names

rnames = ’b1’;

for i=2:k;

bstring = [’b’ num2str(i)];

rnames = strvcat(rnames,bstring);

end;

rnames = strvcat(rnames,’sigma’);

disp(’Estimates of tobit’)

disp(’ coef sd t-stat’)

for ii=1:k+1

fprintf(’%s%10.5f%10.5f%10.5f\n’,rnames(ii,:),beta(ii),sdbeta(ii),zstat(ii))

end

Estimates of tobit

coef sd t-stat

b1 0.58932 0.06228 9.46266

b2 -0.12572 0.02313 -5.43565

b3 0.01570 0.00000 0.00000

b4 0.00427 0.00132 3.23039

b5 -0.00997 0.00547 -1.82376

b6 -0.04438 0.00465 -9.55517

b7 0.00881 0.00170 5.17910

b8 -0.00062 0.00000 0.00000

sigma 0.04800 0.00020 237.12802

This example of numerical optimisation works well. You can check that you get a similar

answer from the tobit function in any econometric package. In many real cases it will

not be that easy. You will be using numerical routines because your econometric package

does not have a function to do the required analysis. There are many pitfalls that lie

in wait for the economist trying to do numerical optimisation. One should never be

satisfied with just one run as above. I did check the results with Verbeek (2008) and

another package and did have to do some amendment to the original programs. In all

cases of non-linear optimisation you should

1. Ensure that the process has converged. The results from a model that has not

converged are totally useless, no matter how good they look.

2. Is there a corresponding published analysis that you can duplicate. Failure to

replicate may indicate a problem with the published data. Can you simulate a

data set with the statistical properties of your real data set? Can you estimate

correctly the model underlying the simulated data.

85

3. If you have problems getting your estimates to converge it may be worth while

rescaling your data so that the means and standard deviations are similar.

4. Is your likelihood surface flat close to the optimum – Your model may be over-

elaborate for your data.

5. The likelihood function may have multiple local maxima. Unless your mathematics

tells you that thee is only one local maximum you should check that you have

found the true optimum. Does an alternative set initial values lead to a different

optimum.

10 Octave, Scilab and R

MATLAB is an excellent program and is widely used in finance, science and engineering.

It has a very good user interface. There may be occasions when you do not have access

to MATLAB and require urgent access. For security reasons, your employer may place

various restrictions on the programs you can use on a work computer. If you want to

use MATLAB you may need local management approval, IT management approval and

purchase through a central purchasing unit. By the time you get MATLAB you may

find that the need has passed. In such a case, you might consider Octave or Scilab which

are two free programs with similar functionality to MATLAB.

10.1 Octave

Octave is largely compatible with MATLAB. Up to recently there were considerable

problems running Octave on windows and it could be recommended only for those with

considerable expertise in MS Windows and some knowledge of a Unix based systems.

The new version 3 of Octave has solved these problems. The interface is different to the

MATLAB interface but this should not lead to any great problems.

A program for base MATLAB will run in Octave with at most minor changes and, in all

likelihood with none. The original drafts of these note were completed with Octave as I

had no easy access to MATLAB at the time. Programs written in Octave may not run

in base MATLAB as base Octave contains many functions similar to those in add-on

MATLAB toolboxes. These make Octave a better package for econometrics than base

MATLAB. Creel (2008) is a set of econometrics notes based with applications in Octave.

Examples, data-sets and programs are available on the web with the notes.

It is claimed that the LeSage package runs in Octave. I have tested some of the packages

and they are compatible but have not installed the entire toolbox.

86

10.2 Scilab

Scilab is another free matrix manipulation language available from www.scilab.org.

Scilab has the same basic functionality as MATLAB but its syntax is a little different.

The functionality of both language is so similar that anyone accustomed to programming

in MATLAB should have no problems reading Scilab programs but Scilab programs

will need editing before they could be used in MATLAB. Scilab contains a utility for

translating MATLAB programs to Scilab. This utility works well. Campbell et al.

(2006) is a good introduction to Scilab and contains a lot of tutorial material. There is

also an econometrics toolbox for Scilab called GROCER. While this package is partly

derived from the LeSage package it has a lot of extra features that might be useful.

One may well ask which is the best program. MATLAB is definitely the market leader

in the field. It is very much embedded in the scientific/engineering fields with branches

in Finance. It has applications in advanced macroeconomics and is a suitable tool for

empirical research. Octave is very similar to MATLAB but has only recently made

the transition to MS Windows. Octave has better facilities than base MATLAB. The

combination of Scilab and GROCER makes a most interesting tool for economics. If I

was working in a MATLAB environment where good support was available in-house I

would not try anything else. If I wanted a program to run my MATLAB programs at

home and did not want to go to the expense of acquiring a licence for basic MATLAB

and tools I would try Octave first. If I was just interested in some private empirical

research Scilab would be worth trying. Experience gained in programming Octave or

Scilab would transfer easily to MATLAB.

10.3 R

Faced with these alternatives my personal choice has been R. R is “GNU S”, a freely

available language and environment for statistical computing and graphics which pro-

vides a wide variety of statistical and graphical techniques: linear and nonlinear mod-

elling, statistical tests, time series analysis, classification, clustering, etc. More infor-

mation is available from The Comprehensive R Archive Network (CRAN) at http:

//www.r-project.org/ or at one of its many mirror sites. Not only does R cover all

aspects of statistics but it has most of the computational facilities of MATLAB. It is

the package in which most academic statistical work is being completed. There is a

large amount of free tutorial material available on CRAN and an increasing number of

textbooks on R have been published in recent years.

If it can not be done in basic R then one is almost certain to find a solution in one of

the 1600+ “official packages” on CRAN or the “unofficial packages” on other sites. R is

regarded as having a steep learning curve but there are several graphical interfaces that

facilitate the use of R. Summary information of the use of R in economics and finance

can be seen on the Task views on the CRAN web site or on one of its many mirrors.

Kleiber and Zeileis (2008) is a good starting point for econometrics in R.

87

References

Campbell, S. L., J.-P. Chancelier, and R. Nikoukhah (2006). Modeling and Simulation

in Scilab/Scicos. Springer.

Creel, M. (2008). Econometrics. http://pareto.uab.es/mcreel/Econometrics/.

Green, W. H. (2000). Econometric Analysis (fourth ed.). Prentice Hall.

Green, W. H. (2008). Econometric Analysis. Pearson Prentice Hall.

Higham, D. J. and N. J. Higham (2005). MATLAB Guide. Society for Industrial and

Applied Mathematics.

Kendrick, D. A., P. Mercado, and H. M. Amman (2006). Computational Economics.

Princeton University Press.

Kleiber, C. and A. Zeileis (2008). Applied Econometrics with R. Springer.

LeSage, J. P. (1999, October). Applied econometrics using MATLAB.

Ljungqvist, L. and T. J. Sargent (2004). Recursive Macroeconomic Theory (Second

edition ed.). Princeton University Press.

Marimon, R. and A. Scott (Eds.) (1999). Computational Methods for the Study of

Dynamic Economies. Oxford University Press.

Miranda, M. J. and P. L. Fackler (2002). Applied Computational Economics and Finance.

Princeton University Press.

Paolella, M. S. (2006). Fundamental Probability: A Computational Approach. Wiley.

Paolella, M. S. (2007). Intermediate Probability: A Computational Approach. Wiley.

Pratap, R. (2006). Getting Started with MATLAB 7 : A Quick Introduction for Scientists

and Engineers. Oxford University Press.

Shone, R. (2002). Economic Dynamics (Second ed.). Cambridge.

Verbeek, M. (2008). A Guide to modern Econometrics (Third ed.). Wiley.

88

A Functions etc. in LeSage Econometrics Toolbox

A.1 Regression

The regression function library is in a subdirectory regress.

A.1.1 Programs

program description

ar g Gibbs sampling Bayesian autoregressive model

bma g Gibbs sampling Bayesian model averaging

boxcox Box-Cox regression with 1 parameter

boxcox2 Box-Cox regression with 2 parameters

egarchm EGARCH(p,q)-in-Mean regression model

emhergott EM estimates of Hamilton’s markov switching model

garchs garchs(1,1,1) model using non-central t-distribution

hmarkov em Hamilton’s markov switching model

hwhite Halbert White’s heteroscedastic consistent estimates

lad least-absolute deviations regression

lm test LM-test for two regression models

logit logit regression

mlogit multinomial logit regression

nwest Newey-West hetero/serial consistent estimates

ols ordinary least-squares

ols g Gibbs sampling Bayesian linear model

olsar1 Maximum Likelihood for AR(1) errors ols model

olsc Cochrane-Orcutt AR(1) errors ols model

olst regression with t-distributed errors

probit probit regression

probit g Gibbs sampling Bayesian probit model

ridge ridge regression

robust iteratively reweighted least-squares

rtrace ridge estimates vs parameters (plot)

sur seemingly unrelated regressions

switch em switching regime regression using EM-algorithm

theil Theil-Goldberger mixed estimation

thsls three-stage least-squares

tobit tobit regression

tobit g Gibbs sampling Bayesian tobit model

tsls two-stage least-squares

waldf Wald F-test

89

A.1.2 Demonstrations

program description

ar gd demonstration of Gibbs sampling ar g

bma gd demonstrates Bayesian model averaging

boxcox demonstrates Box-Cox 1–parameter model

boxcox2 demonstrates Box-Cox 2–parmaeter model

demo all demos most regression functions

egarchm d demos egarchm function

garchs d demos garchs function

hmarkov emd demos Hamilton’s model

hmarkov emd2 another demo of Hamilton’s model

hwhite d H. White’s hetero consistent estimates demo

lad d demos lad regression

lm test d demos lm test

logit d demonstrates logit regression

mlogit d demonstrates multinomial logit

nwest d demonstrates Newey-West estimates

ols d demonstrates ols regression

ols d2 Monte Carlo demo using ols regression

ols gd demo of Gibbs sampling ols g

olsar1 d Max Like AR(1) errors model demo

olsc d Cochrane-Orcutt demo

olst d olst demo

probit d probit regression demo

probit gd demo of Gibbs sampling Bayesian probit model

ridge d ridge regression demo

robust d demonstrates robust regression

sur d demonstrates sur using Grunfeld’s data

switch emd demonstrates switching regression

theil d demonstrates theil-goldberger estimation

thsls d three-stage least-squares demo

tobit d tobit regression demo

tobit d2 tobit right-censoring demo

tobit gd demo of Gibbs sampling Bayesian tobit model

tobit gd2 Bayesian tobit right-censoring demo

tsls d two-stage least-squares demo

waldf d demo of using wald F-test function

90

A.1.3 Support functions

program description

ar1 like used by olsar1 (likelihood)

bmapost used by bma g

box lik used by box cox (likelihood)

box lik2 used by box cox2 (likelihood)

chis prb computes chi-squared probabilities

dmult used by mlogit

egarchm lik likelihood used by egarchm

garchs llf likelihood used by garchs

herg llf likelihood used by emhergott

herg llf2 likelihood used by emhergott

hmarkov llf likelihood used by hmarkov em

hmarkov llf2 likelihood used by hmarkov em

fdis prb computes F-statistic probabilities

find new used by bma g

grun.dat Grunfeld’s data used by sur d

grun.doc documents Grunfeld’s data set

hessian used by tobit to determine numerical hessian

lo like used by logit (likelihood)

mcov used by hwhite

mderivs used by mlogit

mlogit lik used by mlogit

nmlt rnd used by probit g

nmrt rnd used by probit g, tobit g

norm cdf used by probit, pr like

norm pdf used by prt reg, probit

olse ols returning only residuals (used by sur)

plt eqs plots equation systems

plt reg plots regressions

pr like used by probit (likelihood)

prt eqs prints equation systems

prt gibbs prints Gibbs sampling models

prt reg prints regressions

prt swm prints switching regression results

sample used by bma g

stdn cdf used by norm cdf

stdn pdf used by norm pdf

tdis prb computes t-statistic probabilities

to like used by tobit (likelihood)

91

A.2 Utilities

The utility functions are in a subdirectory util.

A.2.1 Utility Function Library

program description

accumulate accumulates column elements of a matrix

blockdiag creates a block diagonal matrix

cal associates obs # with time-series calendar

ccorr1 correlation scaling to normal column length

ccorr2 correlation scaling to unit column length

cols returns the # of columns in a matrix or vector

crlag circular lag function

cumprodc returns cumulative product of each column of a matrix

cumsumc returns cumulative sum of each column of a matrix

delif select matrix values for which a condition is false

diagrv replaces main diagonal of square matrix with vector

findnear finds matrix element nearest a scalar value

fturns finds turning-points in a time-series

growthr converts time-series matrix to growth rates

ical associates time-series dates with obs #

indexcat extract indices equal to a scalar or an interval

indicator converts a matrix to indicator variables

invccorr inverse for ccorr1, ccorr2

invpd makes a matrix positive-definite, then inverts

kernel n normal kernel density estimates

lag generates a lagged variable vector or matrix

levels generates factor levels variable

lprint prints a matrix in LaTeX table-formatted form

lprintf enhanced lprint function

matadd adds non-conforming matrices, row or col compatible.

matdiv divides non-conforming matrices, row or col compatible.

matmul multiplies non-conforming matrices, row or col compatible.

matsub divides non-conforming matrices, row or col compatible.

mlag generates a var-type matrix of lags

mode calculates the mode of a distribution

mprint prints a matrix

mprint3 prints coefficient, t-statistics matrices

92

Utility Function Library - continued

program description

mth2qtr converts monthly to quarterly data

nclag generates a matrix of non-contiguous lags

plt wrapper function, plots all result structures

prodc returns product of each column of a matrix

prt wrapper function, prints all result structures

recserar recursive AR series (like Gauss)

recsercp recursive series product (like Gauss)

roundoff rounds matrix to fixed number of decimal digits

rows returns the # of rows in a matrix or vector

sacf sample autocorrelation function estimates

sdiff seasonal differencing

sdummy generates seasonal dummy variables

selif select matrix values for which a condition is true

seqa a sequence of numbers with a beginning and increment

shist plots spline smoothed histogram

spacf sample partial autocorrelation estimates

stdc std deviations of columns returned as a column vector

sumc returns sum of each column

tally computes frequencies of distinct levels

tdiff time-series differencing

trimc trims columns of a matrix (or vector) like Gauss

trimr trims rows of a matrix (or vector) like Gauss

tsdates time-series dates function

tsprint print time-series matrix

unsort unsorts a sorted vector or matrix

vec turns a matrix into a stacked vector

vech matrix from lower triangular columns of a matrix

xdiagonal spreads x(n× k) out to X(n ∗ n× n ∗ k) diagonal matrix

yvector repeats y(n× 1) to form Y(n ∗ n× 1)

93

A.2.2 demonstration programs

program description

cal d demonstrates cal function

fturns d demonstrates fturns and plt

ical d demonstrates ical function

lprint d demonstrates lprint function

lprintf d demonstrates lprintf function

mprint d demonstrates mprint function

mprint3 d demonstrates mprint3 function

sacf d demonstrates sacf

spacf d demonstrates spacf

tsdate d demonstrates tsdate function

tsprint d demonstrates tsprint function

util d demonstrated some of the utility functions

A.3 Graphing Function Library

A set of graphing functions are in a subdirectory graphs.

A.3.1 graphing programs

program description

tsplot time-series graphs

pltdens density plots

pairs scatter plot (uses histo)

plt plots results from all functions

A.3.2 Demonstration Programs

program description

tsplot d demonstrates tsplot

pltdens d demonstrates pltdens

plt turnsd demonstrates plt turns

pairs d demonstrates pairwise scatter

plt d demonstrates plt on results structures

A.3.3 Support Functions

program description

histo used by pairs

plt turns used by plt to plot turning points

94

A.4 Regression Diagnostics Library

A library of routines in the subdirectory diagn contain the regression diagnostics func-

tions.

A.4.1 regression diagnostic programs

program description

arch ARCH(p) test

bkw BKW collinearity diagnostics

bpagan Breusch-Pagan heteroskedasticity test

cusums Brown,Durbin,Evans cusum squares test

dfbeta BKW influential observation diagnostics

diagnose compute diagnostic statistics

plt dfb plots dfbetas

plt dff plots dffits

plt cus plots cusums

recresid compute recursive residuals

rdiag graphical residuals diagnostics

studentize standardisation transformation

unstudentize reverses studentize transformation

qstat2 Box-Ljung Q-statistic

A.4.2 Demonstration Programs

program description

arch d demonstrates arch

bkw d demonstrates bkw

bpagan d demonstrates bpagan

cusums d demonstrates cusums

dfbeta d demonstrates dfbeta, plt dfb, plt dff

diagnose d demonstrates diagnose

recresid d demonstrates recresid

rdiag d demonstrates rdiag

unstudentize d demonstrates studentize, unstudentize

qstat2 d demonstrates qstat2

A.4.3 support functions

program description

plt cus plots cusums test results

plt dff plots dffits

../util/plt plots everything

../regress/ols.m least-squares regression

95

A.5 vector autoregressive function library

The vector autoregressive library is in a subdirectory var bvar.

A.5.1 VAR/BVAR functions

program description

becm g Gibbs sampling BECM estimates

becmf Bayesian ECM model forecasts

becmf g Gibbs sampling BECM forecasts

bvar BVAR model

bvar g Gibbs sampling BVAR estimates

bvarf BVAR model forecasts

bvarf g Gibbs sampling BVAR forecasts

ecm ECM (error correction) model estimates

ecmf ECM model forecasts

irf impulse response functions

lrratio likelihood ratio tests for lag length

recm ecm version of rvar

recm g Gibbs sampling random-walk averaging estimates

recmf random-walk averaging ECM forecasts

recmf g Gibbs sampling random-walk averaging forecasts

rvar Bayesian random-walk averaging prior model

rvar g Gibbs sampling RVAR estimates

rvarf Bayesian RVAR model forecasts

rvarf g Gibbs sampling RVAR forecasts

var VAR model

varf VAR model forecasts

A.5.2 Demonstration Programs

program description

becm d - BECM model demonstration

becm g Gibbs sampling BECM estimates demo

becmf d becmf demonstration

becmf gd Gibbs sampling BECM forecast demo

bvar d BVAR model demonstration

bvar gd Gibbs sampling BVAR demonstration

bvarf d bvarf demonstration

bvarf gd Gibbs sampling BVAR forecasts demo

ecm d ECM model demonstration

96

A.5.3 Demonstration Programs - continued

program description

ecmf d ecmf demonstration

irf d impulse response function demo

irf d2 another irf demo

lrratio d demonstrates lrratio

pftest d demo of pftest function

recm d RECM model demonstration

recm gd Gibbs sampling RECM model demo

recmf d recmf demonstration

recmf gd Gibbs sampling RECM forecast demo

rvar d RVAR model demonstration

rvar gd Gibbs sampling rvar model demo

rvarf d rvarf demonstration

rvarf gd Gibbs sampling rvar forecast demo

var d VAR model demonstration

varf d varf demonstration

A.5.4 Support Functions

program description

johansen used by ecm,ecmf,becm,becmf,recm,recmf

lag does ordinary lags

mlag does var-type lags

nclag does contiguous lags (used by rvar,rvarf,recm,recmf)

ols used for VAR estimation

pftest prints Granger F-tests

pgranger prints Granger causality probabilities

prt prints results from all functions

prt coint used by prt var for ecm,becm,recm

prt var prints results of all var/bvar models

prt varg prints results of all Gibbs var/bvar models

rvarb used for RVARF forecasts

scstd does univariate AR for BVAR

theil g used for Gibbs sampling estimates and forecasts

theilbf used for BVAR forecasts

theilbv used for BVAR estimation

trimr used by VARF,BVARF, johansen (in /util/trimr.m)

vare used by lrratio (vare uses /regress/olse.m)

97

A.6 Co-integration Library

The co-integration library functions are in a subdirectory coint.

A.6.1 Co-integration testing routines

program description

johansen carries out Johansen’s co-integration tests

adf carries out Augmented Dickey-Fuller unit root tests

cadf carries out ADF tests for co-integration

phillips carries out Phillips-Peron co-integration tests

prt coint prints results from adf,cadf,johansen

A.6.2 Demonstration Programs

program description

johansen d demonstrates johansen

adf d demonstrates adf

cadf d demonstrates cadf

phillips d demonstrates phillips

A.6.3 Support functions

program description

c sja returns critical values for SJ maximal eigenvalue test

c sjt returns critical values for SJ trace test

ztcrit returns critical values for adf test

rztcrit returns critical values for cadf test

detrend used by johansen to detrend data series

ptrend used by adf to create time polynomials

trimr /util/trimr.m (like Gauss trimr)

cols /util/cols.m (like Gauss cols)

rows /util/rows.m (like Gauss rows)

tdiff /util/tdiff.m differences

98

A.7 Gibbs sampling convergence diagnostics functions

The Gibbs convergence diagnostic functions are in a subdirectory gibbs.

A.7.1 Convergence testing functions

program description

apm Geweke’s chi-squared test

coda convergence diagnostics

momentg Geweke’s NSE, RNE

raftery Raftery and Lewis program Gibbsit for convergence

A.7.2 Demonstration Programs

program description

apm d demonstrates apm

coda d demonstrates coda

momentg d demonstrates momentg

raftery d demonstrates raftery

A.7.3 Support Functions

program description

prt coda prints coda, raftery, momentg, apm output (use prt)

empquant These were converted from:

indtest Rafferty and Lewis FORTRAN program.

mcest These function names follow the FORTRAN subroutines

mctest

ppnd

thin

99

A.8 Distribution functions library

Distribution functions are in the subdirectory distrib.

A.8.1 pdf, cdf, inverse functions

program description

beta cdf beta(a,b) cdf

beta inv beta inverse (quantile)

beta pdf beta(a,b) pdf

bino cdf binomial(n,p) cdf

bino inv binomial inverse (quantile)

bino pdf binomial pdf

chis cdf chisquared(a,b) cdf

chis inv chi-inverse (quantile)

chis pdf chisquared(a,b) pdf

chis prb probability for chi-squared statistics

fdis cdf F(a,b) cdf

fdis inv F inverse (quantile)

fdis pdf F(a,b) pdf

fdis prb probabililty for F-statistics

gamm cdf gamma(a,b) cdf

gamm inv gamma inverse (quantile)

gamm pdf gamma(a,b) pdf

hypg cdf hypergeometric cdf

hypg inv hypergeometric inverse

hypg pdf hypergeometric pdf

logn cdf lognormal(m,v) cdf

logn inv lognormal inverse (quantile)

logn pdf lognormal(m,v) pdf

logt cdf logistic cdf

logt inv logistic inverse (quantile)

logt pdf logistic pdf

norm cdf normal(mean,var) cdf

norm inv normal inverse (quantile)

norm pdf normal(mean,var) pdf

pois cdf poisson cdf

pois inv poisson inverse

pois pdf poisson pdf

100

pdf, cdf, inverse functions - continued)

program description

stdn cdf std normal cdf

stdn inv std normal inverse

stdn pdf std normal pdf

tdis cdf student t-distribution cdf

tdis inv student t inverse (quantile)

tdis pdf student t-distribution pdf

tdis prb probabililty for t-statistics

A.8.2 Random Samples

program description

beta rnd random beta(a,b) draws

bino rnd random binomial draws

chis rnd random chi-squared(n) draws

fdis rnd random F(a,b) draws

gamm rnd random gamma(a,b) draws

hypg rnd random hypergeometric draws

logn rnd random log-normal draws

logt rnd random logistic draws

nmlt rnd left-truncated normal draw

nmrt rnd right-truncated normal draw

norm crnd contaminated normal random draws

norm rnd multivariate normal draws

pois rnd poisson random draws

tdis rnd random student t-distribution draws

unif rnd random uniform draws (lr,rt) interval

wish rnd random Wishart draws

101

A.8.3 Demonstration and Test programs

program description

beta d demo of beta distribution functions

bino d demo of binomial distribution functions

chis d demo of chi-squared distribution functions

fdis d demo of F-distribution functions

gamm d demo of gamma distribution functions

hypg d demo of hypergeometric distribution functions

logn d demo of lognormal distribution functions

logt d demo of logistic distribution functions

pois d demo of poisson distribution functions

stdn d demo of std normal distribution functions

tdis d demo of student-t distribution functions

trunc d demo of truncated normal distribution function

unif d demo of uniform random distribution function

A.8.4 Support Functions

program description

betacfj used by fdis prb

betai used by fdis prb

bincoef binomial coefficients

com size test and converts to common size

gammalnj used by fdis prb

is scalar test for scalar argument

A.9 Optimisation functions library

Optimisation functions are in the subdirectory optimiz0e.

A.9.1 Optimization Functions

program description

dfp min Davidson-Fletcher-Powell

frpr min Fletcher-Reeves-Polak-Ribiere

maxlik general all-purpose optimisation routine

pow min Powell conjugate gradient

solvopt yet another general purpose optimization routine

102

A.9.2 Demonstration Programs

program description

optim1 d dfp, frpr, pow, maxlik demo

optim2 d solvopt demo

optim3 d fmins demo

A.9.3 Support Functions

program description

apprgrdn computes gradient for solvopt

box like1 used by optim3 d

gradt computes gradient

hessian evaluates hessian

linmin line minimization routine (used by dfp, frpr, pow)

stepsize stepsize determination

tol like1 used by optim1 d, optim2 d

updateh updates hessian

A.10 Spatial Econometrics

A library of spatial econometrics functions is in the subdirectory spatial.

A.10.1 Functions

program description

casetti Casetti’s spatial expansion model

darp Casetti’s darp model

far 1st order spatial AR model - y = pWy + e

far g Gibbs sampling Bayesian far model

gwr geographically weighted regression

bgwr Bayesian geographically weighted regression

lmerror LM error statistic for regression model

lmsar LM error statistic for sar model

lratios Likelihood ratio statistic for regression models

moran Moran’s I-statistic

sac spatial model - y = p ∗W1 ∗ y +X ∗ b+ u, u = c ∗W2 ∗ u+ e

sac g Gibbs sampling Bayesian sac model

sar spatial autoregressive model - y = p ∗W ∗ y +X ∗ b+ e

sar g Gibbs sampling Bayesian sar model

sarp g Gibbs sampling Bayesian sar Probit model

sart g Gibbs sampling Bayesian sar Tobit model

sem spatial error model - y = X ∗ b+ u, u = c ∗W + e

sem g Gibbs sampling Bayesian spatial error model

103

Functions - continued

program description

semo spatial error model (optimization solution)

sdm spatial Durbin model y = a+X ∗ b1 +W ∗X ∗ b2 + e

sdm g Gibbs sampling Bayesian spatial Durbin model

walds Wald test for regression models

xy2cont constructs a contiguity matrix from x-y coordinates

A.10.2 Demonstration Programs

program description

casetti d Casetti model demo

darp d Casetti darp demo

darp d2 darp for all data observations

far d demonstrates far using a small data set

far d2 demonstrates far using a large data set

far gd far Gibbs sampling with small data set

far gd2 far Gibbs sampling with large data set

gwr d geographically weighted regression demo

gwr d2 GWR demo with Harrison-Rubinfeld Boston data

bgwr d demo of Bayesian GWR

bgwr d2 BGWR demo with Harrison-Rubinfeld Boston data

lmerror d lmerror demonstration

lmsar d lmsar demonstration

lratios d likelihood ratio demonstration

moran d moran demonstration

sac d sac model demo

sac d2 sac model demonstration large data set

sac gd sac Gibbs sampling demo

sac gd2 sac Gibbs demo with large data set

sar d sar model demonstration

sar d2 sar model demonstration large data set

sar gd sar Gibbs sampling demo

sar gd2 sar Gibbs demo with large data set

sarp gd sar Probit Gibbs sampling demo

sart gd sar Tobit model Gibbs sampling demo

sdm d sdm model demonstration

sdm d2 sdm model demonstration large data set

sdm gd sdm Gibbs sampling demo

sdm gd2 sdm Gibbs demo with large data set

sem d sem model demonstration

sem d2 sem model demonstration large data set

104

Demonstration Programs - continued

program description

sem gd sem Gibbs sampling demo

sem gd2 sem Gibbs demo with large data set

semo d semo function demonstration

semo d2 semo demo with large data set

walds d Wald test demonstration

xy2cont d xy2cont demo

A.10.3 Support Functions

program description

anselin.dat Anselin (1988) Columbus crime data

boston.dat Harrison-Rubinfeld Boston data set

latit.dat latittude for HR data

longi.dat longitude for HR data

c far used by far g

c sem used by sem g

c sar used by sar g

c sdm used by sdm g

c sac used by sac g

darp lik1 used by darp

darp lik2 used by darp

elect.dat Pace and Barry 3,107 obs data set

ford.dat Pace and Barry 1st order contiguity matrix

f far far model likelihood (concentrated)

f sac sac model likelihood (concentrated)

f sar sar model likelihood (concentrated)

f sem sem model likelihood (concentrated)

f sdm sdm model likelihood (concentrated)

f2 far far model likelihood

f2 sac sac model likelihood

f2 sar sar model likelihood

f2 sem sem model likelihood

f3 sem semo model likelihood

f2 sdm sdm model likelihood

normxy isotropic normalization of x-y coordinates

prt gwr prints gwr reg results structure

prt spat prints results from spatial models

scoref used by gwr

wmat.dat Anselin (1988) 1st order contiguity matrix

105

