
Financial Econometrics

MFE MATLAB Introduction

Kevin Sheppard
University of Oxford

September 27, 2010

c©2007-2010 Kevin Sheppard

2

Contents

1 Preliminaries 4

2 Basic Input and Operators 13

3 Functions 16

4 Accessing Elements in Matrices 19

5 Program Flow 21

6 Logical Operators 23

7 Loading Data 25

8 Graphics 26

3

Lesson 1

Preliminaries

This lesson covers:

• Connecting to the server

• Launching MATLAB

• Launching the editor

• Creating a startup file

• Using MATLAB with a laptop or other computer

• Moving files to and from the server

Task 1.1 (Complete the Registration Form) Enter your name, single sign-on ID and

Connecting to the Server

If using the economics department computer lab, connecting is simple: click on

mrb-teachinglab.manor-road.ox.ac.uk

This will connect the thin client to one the servers. There are a number of physical servers behind the

cluster name and the system will automatically load balance users. Following a few basic principles will

ensure that using the servers is fairly painless:

1. Save relatively often. Occasionally connections to the server are unexpectedly interrupted and work

can be lost. Work saved in personal storage (U:\) will not.

2. Always save code in the editor. The command history should be preserved across logons but unex-

pected disconnections may results in changes not being saved.

3. If accidentally disconnected, try reconnecting. In many cases, the previous session will be restored

and anything unsaved will be preserved.

4

4. Despite the point above, do not count on being reconnected to the previous session if unintentionally

disconnected – hence, save often.

5. When finished using the server, always logoff by either clicking the logoff icon on the desktop or se-

lecting Start>Logoff. This ensures that your settings, such as the command history in MATLAB, will be

restored when you logon again.

These principles apply whether connecting from a laptop or from the computer lab.

Task 1.2 (Connecting to the server) Connect to the server, logon and change your password to something

memorable but not easy to guess.

Note: You must complete the Student Registration form before you receive an account. If you have not

completed this form you will be using a temporary username and password.

Remember your password. You should probably write it down somewhere safe. If you misplace your

username and/or password, please contact itsupport@manor-road.ox.ac.uk for assistance.

Task 1.3 (Create/Verify the Work Directory) Open My Computer and navigate to the U drive. The default

directory should be U:\MATLAB. If this directory exists then there is nothing to do. If this directory does not

exist, create a folder with the name MATLAB on the U drive.

Note: If you are using one of the temporary account you will have a H drive (not U).

Launching MATLAB

To launch MATLAB, select Start>Programs>Economics>MATLAB>R2010a>MATLAB R2010a.1 When MATLAB

opens, a window similar to figure 1.1 should be present, although the contents of the left panes may vary.

Task 1.4 (Launching MATLAB) Open MATLAB on your terminal.

Launch the Editor

Once MATLAB is up and running, launch the editor. There are two methods to accomplish this task

• Enter edit in the command window

• Use the menu via File>New>M-File.

The editor should appear similar to figure 1.2.

Task 1.5 (Launch the Editor) Open the editor using one the methods above. Once the editor is open, create

a file with the following contents:

x = exp(1)

y = log(x)

and save it as lesson1.m. Go to the command window and enter lesson1. The command window should

show
1The version may be different depending on which server being used.

5

itsupport@manor-road.ox.ac.uk

Figure 1.1: Basic MATLAB Window. The standard setup has four pains. 1: The command window, 2: Current
Directory, 3: Workspace, and 4: Command History

x =

2.7183

y =

1

Task 1.6 (Edit an Existing File) Next, close the editor by either clicking on the “X” in the top right corner

or selecting File>Close Editor. A specific file can be opened in the editor by entering edit filename in the

command window. To verify this works, try the following:

>> edit lesson1

Create a startup file

Note: If you are using one of the temporary account you will have a H drive (not U), and so all references to

U:\ should be H:\. It is important to repeat this step on your own once you have a permanent account.

6

Figure 1.2: The editor

A large number of functions designed for use on the course have been written and stored in a common

location. To ensure that these files are available every time MATLAB is run, create an m-file names startup

in U:\MATLAB. To accomplish this task, return to the MATLAB command prompt and input

>> cd U:\MATLAB

If you receive an error you may need to create the folder, which can be accomplished using command

windows by entering

>> mkdir(’U:\MATLAB’)

If you needed to make the directory, you should rerun the cd command above and ensure that the Current

Directory windows at the top of the MATLAB desktop shows U:\MATLAB. To create the startup file, open it

in the editor by inputting

>> edit startup

You will be prompted to to create this file. Select Yes.

path(’Q:\Economics\MFE’,path)

path(’\\manor-road.ox.ac.uk\Store\Shared\Economics\MFE’,path)

7

When finished, save the file in U:\MATLAB (that path should already be correct) as U:\MATLAB\startup.m.

To verify that you were successful, close and reopen MATLAB, the run the following command

>> which acf -all

The output should be

\\manor-road.ox.ac.uk\Store\Shared\Economics\MFE\acf.m

Q:\Economics\MFE\acf.m % Shadowed

If you see ’acf’ not found. something has gone wrong.

Using MATLAB with a Laptop or Other Computer

Note: These instructions are for the latest Windows Remote Desktop client. It is important that the latest client

is used. If running Windows 7 or Vista, the client is current. If running Windows XP, run Windows Update to

determine if a newer client is available. If running Linux or OSX, consult the material on the course website

to connect to the server.

The Terminal Servers are grouped into a load balancing pool and all servers within a pool are simi-

larly configured. You should usually connect to mrb-studentlab.manor-road.ox.ac.uk which balances

between:

DNS Name IP Address Processor Available Memory

MRB-StudentTS01 129.67.98.235 2GHz Xeon 12 GB

MRB-StudentTS02 129.67.98.236 2GHz Xeon 12 GB

To setup a connection, select Start>All Programs>Accessories>Remote Desktop Connection or run mstsc

from a command prompt. This will launch the Remote Desktop Client (RDC) and the following window will

appear:

Once the client is open, click Options>>. This should produce:

8

In the box labeled computer, enter mrb-studentlab.manor-road.ox.ac.uk. Next click on the Display tab.

The default options should be acceptable, although if you are having problems you may want to de-

crease the color bit depth or lower the resolution to something less than Full Screen. These two options

may improve performance on slow connections. Next click on the Experience tab.

9

First set the sounds to Do Not Play. Next make sure Printers and Clipboard are ticked. Finally click

More... which will produce the dialog below.

In this dialog box, check the box next to disks. This will allow you to easily move files between your own

computer and the server. When available, your local drives (those on your desktop or laptop) will appear in

My Computer on the server. Next click on the Local Resources tab.

10

You should start off with LAN. If the connection to the server is sluggish or you are not on campus, you

may try one of the other settings which may improve performance. Finally, click on the Advanced tab.

On the advanced tab, make sure that “Connect and don’t warn me” is selected. When finished, returns

to the General tab and save the connection using a meaningful name (e.g. Economics Server).

Note: You are required to change your password the first time you connect. Passwords must contain

• At least 7 characters

• At least 1 UPPER and 1 lower case letter

• At least one number (1, 2, . . .) or 1 symbol (#, $, %, etc.)

In addition, passwords cannot be common English language words.

11

Disconnecting your session

It is crucial that you log off when finished, even for a few minutes, and do not disconnect. There are no

guarantees that disconnecting will preserve the session or any unsaved work. It is also important to save

regularly in case the network connection is interrupted.

Moving files to and from the server

There are two primary methods to move files to and from the server. The first, using the Remote Desktop

Client, is described above. Once sharing drives is enabled, the drives of the local laptop or desktop will

appear in My Computer on the server. These can be browsed like any other drive in Windows and files can

be cut, copied and pasted between the server and the local computer.

Mapping a network drive

Open My Computer and select Tools>Map Network Drive. Select the drive letter you would like to use and

enter \\manor-road.ox.ac.uk\store\economics\students\data\user.name (where user.name is you user-

name, e.g. kevin.sheppard) for the folder and select Finish. When prompted for a username and password,

enter MANOR-ROAD\user.name and your password.

Note: It may not be possible to map or access this resource from all locations due to firewalls. As a results,

you should be certain that your local drives are shared through the Remtoe Desktop Connection. As a back-

stop, a simple an effective method to move files is to use a web mail program. Create a draft email on your

local PC and upload an attachment. The draft can then be accessed on the server through a browser.

Exercises

Exercise 1.7 Setup and save a connection to the server on your computer.

Exercise 1.8 Connect to the server and make sure MATLAB is working.

Exercise 1.9 Use one or both of the methods described to move a file from the local computer to the server

and a file from the server to the local computer.

Exercise 1.10 Explore alternative views of the MATLAB desktop by changing the configuration using the

Desktop menu.

12

Lesson 2

Basic Input and Operators

This lesson covers:

• Manually inputting data in scalars, vectors and matrices

• Basic mathematical operations

• Saving and loading data

August 2009 returns (computed using closing prices) for the first 10 trading days for IBM, Microsoft, and

Hewlett-Packard are listed in table 2.1.

Task 2.1 (Input scalar data) Create 3 variables, one labeled IBM, one labeled MSFT and one labeled HPQ that

contain the August 1 return of the name. For example, to enter the IBM data,

>> IBM = 0.0174

IBM =

0.0174

Task 2.2 (Semicolon (;)) Re-enter the data in the previous task but this time use a semicolon (;) to suppress

output. Verify that the value is correct by entering the ticker symbol alone on the command prompt (and

without a semicolon). For example,

Returns in August 2007
Date IBM Return MSFT Return HPQ Return

3-Aug 0.0174 0.0170 0.0018
4-Aug -0.0026 -0.0025 0.0009
5-Aug -0.0094 0.0016 -0.0036
6-Aug -0.0045 -0.0148 -0.0243
7-Aug 0.0164 0.0042 0.0308

10-Aug -0.0052 -0.0059 0.0029
11-Aug -0.0076 -0.0125 -0.0064
12-Aug 0.0126 0.0172 0.0180
13-Aug 0.0024 0.0038 0.0038
14-Aug -0.0084 0.0029 -0.0058

Table 2.1: IBM, Microsoft and Hewlett-Packard return data for the first 10 trading days of August 2009.

13

>> IBM = 0.0174;

>> IBM

IBM =

0.0174

Task 2.3 (Input a Row Vector) Create row vectors for each of the days in Table 2.1 named AugXX where XX

is the numeric date. For example,

>> Aug03 = [0.0174 0.0170 0.0018];

>> Aug04 = [-0.0026 -0.0025 0.0009];

Task 2.4 (Input a Column Vector) Create column vectors for each of the ticker symbols in Table 2.1 named

IBM, MSFT and HPQ, respectively. For example,

>> IBM = [0.0174; -0.0026; -0.0094; -0.0045; 0.0164; -0.0052; -0.0076; 0.0126; 0.0024; -0.0084];

Task 2.5 (Input a Matrix) Create a matrix named returns containing Table 2.1. A matrix is just a column

vector containing row vectors. For example,the first two days worth of data are

>> returns = [0.0174 0.0170 0.0018; -0.0026 -0.0025 0.0009];

Task 2.6 (Construct a Matrix from Row and Column Data) Create a second matrix named returns_row from

the row vectors previously entered such that the results are identical to returns. For example, the first two

days worth of data are

>> returns_row = [Aug03;Aug04];

Create a third matrix named returns_col from the 3 column vectors entered such that the results are iden-

tical to returns

>> returns_col = [IBM MSFT HPQ];

Verify that all three matrices are identical by entering

>> returns_col - returns

>> returns_row - returns

and that all elements are 0.

Task 2.7 (Saving Data) Save all data to a file named myfirstmat. Next save only the returns matrix, returns,

to a file named returnsonly.

>> save myfirstmat

>> save returnsonly returns

Verify that your data was saved by clearing all variables using

>> clear all

and then loading the files using the load command.

Task 2.8 (Addition and Subtraction) Add the returns of the three series together. Add the returns in Aug01

to the returns of IBM. What happens?

14

Task 2.9 (Multiplication) Multiply the returns of IBM by 2.

Task 2.10 (Constructing portfolio returns) Set up a vector or portfolio weights

w =
(

1

3
,

1

3
,

1

3

)
Compute the returns to an equally weighted portfolio

Note: Division uses the slash operator (/).

Task 2.11 (Mean, Standard Deviation and Correlation) Using the function mean, compute the mean of the

three returns series one at a time. For example

>> IBMmean = mean(IBM)

Next, compute the mean of the matrix of returns using

>> retmean= mean(returns)

What is the relationship between these two? Repeat this exercise for the standard deviation (std). Finally,

compute the correlation of the matrix of returns (corr).

Task 2.12 (Summing all elements) Compute the sum of the columns of returns. How is this related to the

mean computed in the previous step?

Task 2.13 (Maximum and Minimum Values) Compute the minimum and maximum values of the columns

of returns using the min and max commands.

Task 2.14 (Rounding Up, Down and to the Closest Integer) Rounding up is handled by ceil, rounding down

is handled by floor and rounding to the closest integer is handled by round. Try all of these commands on

100 times returns. For example,

>> round(100*returns)

Task 2.15 (Element-by-Element Multiplication) Mathematical commands in MATLAB obey the rules of

matrix algebra. This is why the portfolio returns could be easily computed as above. MATLAB also supports

element-by-element operations using the “dot” operations, .* (multiplication) and ./ (division). Multiply the

returns of IBM and MSFT together using the dot operator.

15

Lesson 3

Functions

This lesson covers:

• Calling function with more than one input and output

• Calling functions when some inputs are not used

• Writing a custom function

Begin by clearing all data from the workspace and loading the data in deciles.mat

>> clear all

>> load deciles

This data set contains 2 years of data on the 10 CRSP decile portfolios from 2006-2007. The variables

are named decXX where XX ranges from 01 (smallest) to 10 (largest). Also included is a variable named date

that contains the date in MATLAB date format.

Task 3.1 (Calling Functions) Functions were used in the previous lesson. Get used to calling functions by

computing the mean, std, kurtosis, max, and mean of the 10 portfolios in deciles.mat. Also, explore the help

available for calling functions using the help and doc commands. For example,

>> help std

>> doc std

Task 3.2 (Calling Functions with 2 Outputs) Some useful functions return 2 or more outputs. One exam-

ple is sort which will sort a vector or matrix (column-by-column) and returns the sorted data in the first

output and the indices of the elements in the second element. Sort the elements of dec01 and dec10. What

is the index of the largest and the smallest elements?

>> sort(dec10)

>> [dec10_sorted,dec10_indices] = sort(dec10)

Task 3.3 (Calling Functions with 2 Inputs) Many functions take two or more inputs. Like outputs, the in-

puts are simply listed in order separated by commas. Use linspace to produce a series of 11 points evenly

spaced between 0 and 1. The help for linspace is listed below.

16

>> help linspace

LINSPACE Linearly spaced vector.

LINSPACE(X1, X2) generates a row vector of 100 linearly

equally spaced points between X1 and X2.

LINSPACE(X1, X2, N) generates N points between X1 and X2.

For N < 2, LINSPACE returns X2.

Class support for inputs X1,X2:

float: double, single

See also logspace, :.

Reference page in Help browser

doc linspace

Task 3.4 (Calling Functions with Empty Inputs and Outputs) On occasion it is necessary to call a function

where some, but not all, inputs are required. One such example is std, which takes the data as its first

argument, has a flag for a bias correction as its second argument, and takes the dimension as its third.

Compute the standard deviation of each decile, then compute the standard deviation across the individual

days (Hint: Down is dim 1, across is dim 2).

>> help std

STD Standard deviation.

For vectors, Y = STD(X) returns the standard deviation. For matrices,

Y is a row vector containing the standard deviation of each column. For

N-D arrays, STD operates along the first non-singleton dimension of X.

STD normalizes Y by (N-1), where N is the sample size. This is the

sqrt of an unbiased estimator of the variance of the population from

which X is drawn, as long as X consists of independent, identically

distributed samples.

Y = STD(X,1) normalizes by N and produces the square root of the second

moment of the sample about its mean. STD(X,0) is the same as STD(X).

Y = STD(X,FLAG,DIM) takes the standard deviation along the dimension

DIM of X. Pass in FLAG==0 to use the default normalization by N-1, or

1 to use N.

Example: If X = [4 -2 1

9 5 7]

then std(X,0,1) is [3.5355 4.9497 4.2426] and std(X,0,2) is [3.0 2.0]

Class support for input X:

float: double, single

See also cov, mean, var, median, corrcoef.

Overloaded methods:

17

timeseries/std

fints/std

ProbDistUnivParam/std

Reference page in Help browser

doc std

Task 3.5 (Writing a Custom Function) Custom functions will play an important role later in the course

when estimating parameters. Construct a custom function that takes two arguments, µ and σ2 and com-

putes the likelihood function of a normal random variable

f (x ;µ,σ2) =
1√

2πσ2
exp

(
− (x − µ)

2

2σ2

)
Save this function as normal_likelihood.m and compute the likelihood of x = 0,µ = 0,σ2 = 1.

Exercises

Exercise 3.6 (Custom Function) Write a function named summary_stats that will take a single input, x, and

return a matrix with 4 columns and as many rows as there were columns in the original data where the

columns contain the mean, standard deviation, skewness and kurtosis of x.

Exercise 3.7 (Custom Function) Extend your function in the final task of this lesson to allow for vector val-

ues of x , µ, andσ2 (all the same size). Test your function with

>> x=[-3;0;1];

>> mu = [-3;0;2];

>> sigma2=[9 4 1];

18

Lesson 4

Accessing Elements in Matrices

This lesson covers:

• Accessing specific elements in vectors and matrices

Accessing elements in a vector or matrix is a common task. To begin this lesson, clear the workspace,

set up a two vectors, y and z, and a 5× 5 matrix x using the following commands:

>> clear all

>> x=1:25;

>> x=reshape(x,5,5)

x =

1 6 11 16 21

2 7 12 17 22

3 8 13 18 23

4 9 14 19 24

5 10 15 20 25

>> y = 1:5

y =

1 2 3 4 5

>> z = (1:5)’

z =

1

2

3

4

5

These vectors and matrix will make it easy to determine which elements are selected by a command.

19

Task 4.1 (Picking an Element out of a Matrix) Select the third element of all three, x, y and z. Next select

the 11th element of x. Finally, using double index notation, select the (1,3) and the (3,1) element of x such as

in

>> x(1,3)

>> x(3,1)

Which index is rows and which index is columns? Does MATLAB count across first then down or down first

then across?

Task 4.2 (Selecting Entire Rows) Select the 2nd row of x using the colon (:) operator. Select the 2nd column

of z then y using the same syntax. What happens?

Task 4.3 (Selecting Entire Columns) Select the 2nd column of x using the colon (:) operator.

Task 4.4 (Selecting Specific Rows or Columns) Select the 2nd and 3rd columns of x using the colon (:) oper-

ator. Select the 2nd and 4th rows of x. How can these be combined to select columns 2 and 3 and rows 2 and

4?

Exercises

Exercise 4.5 (Selecting Data by Date) Load the data in deciles.mat and construct a matrix containing all of

the vectors. How can all returns on a particular day be selected? How can all returns for a particular decile

be selected?

20

Lesson 5

Program Flow

This lesson covers:

• for loops

• Nested loops

Task 5.1 (Basic For Loops) Construct a for loop to sum the numbers between 1 and N for any N . A for

loop that does nothing can be written

N = 10

for i=1:N

end

Task 5.2 (Compute a compound return) The compound return on a bond that pays interest annually at

rate r is given by

c rt =
T∏

i=1

(1 + r) = (1 + r)T

Use a for loop compute the total return for £100 invested today for 1,2,. . .,10 years. Store this variable in a

10 by 1 vector cr.

Task 5.3 (Simulate a random walk) (Pseudo) Normal random variables can be simulated using the com-

mand randn(N,M) where N and M are the dimensions of the desired random numbers. Simulate 100

normals in a 100 by 1 vector and name the result e. Initialize a vector p containing zeros using the function

zeros. Add the 1st element of e to the first element of p. Use a for loop to simulate a process

yi = yi−1 + e i

When finished plot the results using

>> plot(y)

Task 5.4 (Nested Loops) Begin by clearing the workspace and loading deciles.mat. Begin by adding 1 to

the returns to produce gross returns.1 Use two loops to loop both across time and across the 10 deciles to

1A gross return is the total the value in the current period of £1 invested in the previous period. A net return subtracts the original
investment to produce the net gain or loss.

21

compute the total compound return. For example, if only interested in a single series, this

cr=zeros(size(dec01));

gr = 1 + dec01;

cr(1) = 1+dec01(1);

T=10;

for t=2:T

cr(t)=cr(t-1)*gr(t);

end

would compute the cumulated return. When finished, plot the cumulative returns using plot(cr). After

finishing this assignment, have a look at doc cumsum and doc cumprod.

Exercises

Exercise 5.5 Simulate a 1000 by 10 matrix consisting of 10 standard random walks using both nested loops

and cumsum. Plot the results. If you rerun the code, do the results change? Why?

22

Lesson 6

Logical Operators

This lesson covers:

• Basic logical operators

• Compound operators

• Mixing logic and loops

• all and any

Begin by clearing all data and loading the data in deciles.mat

Task 6.1 (Basic Logical Statements) For decile 1 and decile 10, count the number of elements that are < 0,

≥ 0 and exactly equal to 0. Next count the number of times that the returns in decile 5 are greater, in

absolute value, that 2 times the standard deviation of the returns in that decile.

Task 6.2 (Compound Statements) Count the number of times that the returns in both decile 1 and decile

10 are negative. Next count the number of times that the returns in deciles 1 and 10 are both greater, in

absolute value, that 2 times their respective standard deviations.

Task 6.3 (Logical Statements and for Loops) Use a for loop along with an if statement to simulate an

asymmetric random walk of the form

yi = yi−1 + e i + I [e i<0]e i

where I [e i<0] is known as an indicator variable that takes the value 1 if the statement in brackets is true. Plot

y .

Task 6.4 (Selecting Elements using Logical Statements) For decile 1 and decile 10, select the elements that

are < 0,≥ 0 and exactly equal to 0. Next select the elements where both deciles are less than 0.

Task 6.5 (Using find) Use find to select the index of the elements in decile 5 that are negative. Next, use

the find command in its two output form to determine which elements of the decile return matrix are less

than -2%.

23

Exercises

Exercise 6.6 (all and any) Use all to determine the number of days where all of the decile returns were

negative. Use any to compute the number of days with at least 1 negative return and with no negative

returns (Hint: use negation (∼)).

24

Lesson 7

Loading Data

This lesson covers:

• Preparing data for import

• Importing data

• Converting dates

Begin by clearing all data from the workspace.

Task 7.1 (Formatting Data in Excel for Import) Format the return data contained in excel.xls for import

into MATLAB and save the file as excel_for_import.xls. The Excel file can be downloaded from

http://www.kevinsheppard.com/wiki/MFE_MATLAB_Introduction.

Task 7.2 (Importing Data) Import the file created in the previous step and save the data to excel_imported.mat.

Task 7.3 (Converting Dates) Convert the dates imported in the previous step using x2mdate.

Exercises

Exercise 7.4 (Practice) Getting data into and out of MATLAB is very important for your success in the com-

puting portion of the course. Practice on the file excel_practice.xls which is available on the website,

http://www.kevinsheppard.com/wiki/MFE_MATLAB_Introduction.

25

Lesson 8

Graphics

This lesson covers:

• Basic plotting

• Editing plots

• Subplots

• Histograms

Begin by clearing all data from the workspace and loading the data in hf.mat. This data set contains

high-frequency price for IBM and MSFT on a single day and times in MATLAB format.

Task 8.1 (Basic Plotting) Plot the series labeled IBMprice which contains the price of IBM. Add a title and

label the axes. Use the interactive tool to add markers and remove the line.

Task 8.2 (Subplot) Create a 2 by 1 subplot with the price of IBM in the top subplot and the price of MSFT

in the bottom subplot.

Task 8.3 (Plot with Dates) Plot the price of IBM against the series IBMdate. Use datetick to reformat the

x-axis.

Task 8.4 (Histogram) Produce a histogram of MSFT returns (Hint: you have to produce the Microsoft re-

turns first).

26

	Preliminaries
	Basic Input and Operators
	Functions
	Accessing Elements in Matrices
	Program Flow
	Logical Operators
	Loading Data
	Graphics

